Multiple Solutions in Euler’s Elastic Problem


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper is devoted to multiple solutions of the classical problem on stationary configurations of an elastic rod on a plane; we describe boundary values for which there are more than two optimal configurations of a rod (optimal elasticae). We define sets of points where three or four optimal elasticae come together with the same value of elastic energy. We study all configurations that can be translated into each other by symmetries, i.e., reflections at the center of the elastica chord and reflections at the middle perpendicular to the elastica chord. For the first symmetry, the ends of the rod are directed in opposite directions, and the corresponding boundary values lie on a disk. For the second symmetry, the boundary values lie on a Möbius strip. As a result, we study both sets numerically and in some cases analytically; in each case, we find sets of points with several optimal configurations of the rod. These points form the currently known part of the reachability set where elasticae lose global optimality.

作者简介

A. Ardentov

Ailamazyan Program Systems Institute

编辑信件的主要联系方式.
Email: aaa@pereslavl.ru
俄罗斯联邦, Pereslavl-Zalessky

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018