Local bifurcations in the periodic boundary value problem for the generalized Kuramoto–Sivashinsky equation


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For a version of the generalized Kuramoto–Sivashinsky equation with “violated” symmetry, the periodic boundary value problem was investigated. For the given dynamic distributed-parameter system, consideration was given to the issue of local bifurcations at replacing stability by spatially homogeneous equilibrium states. In particular, the bifurcation of the two-dimensional local attractor with all Lyapunov-unstable solutions on it was detected. Analysis of the bifurcation problem relies on the method of the integral manifolds and normal forms for the systems with infinitely dimensional space of the initial conditions.

Sobre autores

A. Kulikov

Demidov State University

Autor responsável pela correspondência
Email: anat_kulikov@mail.ru
Rússia, Yaroslavl

D. Kulikov

Demidov State University

Email: anat_kulikov@mail.ru
Rússia, Yaroslavl

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017