Local bifurcations in the periodic boundary value problem for the generalized Kuramoto–Sivashinsky equation
- Авторлар: Kulikov A.N.1, Kulikov D.A.1
-
Мекемелер:
- Demidov State University
- Шығарылым: Том 78, № 11 (2017)
- Беттер: 1955-1966
- Бөлім: Nonlinear Systems
- URL: https://journals.rcsi.science/0005-1179/article/view/150715
- DOI: https://doi.org/10.1134/S0005117917110029
- ID: 150715
Дәйексөз келтіру
Аннотация
For a version of the generalized Kuramoto–Sivashinsky equation with “violated” symmetry, the periodic boundary value problem was investigated. For the given dynamic distributed-parameter system, consideration was given to the issue of local bifurcations at replacing stability by spatially homogeneous equilibrium states. In particular, the bifurcation of the two-dimensional local attractor with all Lyapunov-unstable solutions on it was detected. Analysis of the bifurcation problem relies on the method of the integral manifolds and normal forms for the systems with infinitely dimensional space of the initial conditions.
Негізгі сөздер
Авторлар туралы
A. Kulikov
Demidov State University
Хат алмасуға жауапты Автор.
Email: anat_kulikov@mail.ru
Ресей, Yaroslavl
D. Kulikov
Demidov State University
Email: anat_kulikov@mail.ru
Ресей, Yaroslavl
Қосымша файлдар
