Local bifurcations in the periodic boundary value problem for the generalized Kuramoto–Sivashinsky equation


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

For a version of the generalized Kuramoto–Sivashinsky equation with “violated” symmetry, the periodic boundary value problem was investigated. For the given dynamic distributed-parameter system, consideration was given to the issue of local bifurcations at replacing stability by spatially homogeneous equilibrium states. In particular, the bifurcation of the two-dimensional local attractor with all Lyapunov-unstable solutions on it was detected. Analysis of the bifurcation problem relies on the method of the integral manifolds and normal forms for the systems with infinitely dimensional space of the initial conditions.

Авторлар туралы

A. Kulikov

Demidov State University

Хат алмасуға жауапты Автор.
Email: anat_kulikov@mail.ru
Ресей, Yaroslavl

D. Kulikov

Demidov State University

Email: anat_kulikov@mail.ru
Ресей, Yaroslavl

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017