Local bifurcations in the periodic boundary value problem for the generalized Kuramoto–Sivashinsky equation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For a version of the generalized Kuramoto–Sivashinsky equation with “violated” symmetry, the periodic boundary value problem was investigated. For the given dynamic distributed-parameter system, consideration was given to the issue of local bifurcations at replacing stability by spatially homogeneous equilibrium states. In particular, the bifurcation of the two-dimensional local attractor with all Lyapunov-unstable solutions on it was detected. Analysis of the bifurcation problem relies on the method of the integral manifolds and normal forms for the systems with infinitely dimensional space of the initial conditions.

作者简介

A. Kulikov

Demidov State University

编辑信件的主要联系方式.
Email: anat_kulikov@mail.ru
俄罗斯联邦, Yaroslavl

D. Kulikov

Demidov State University

Email: anat_kulikov@mail.ru
俄罗斯联邦, Yaroslavl

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017