Saddle point mirror descent algorithm for the robust PageRank problem


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In order to solve robust PageRank problem a saddle-point Mirror Descent algorithm for solving convex-concave optimization problems is enhanced and studied. The algorithm is based on two proxy functions, which use specificities of value sets to be optimized on (min-max search). In robust PageRank case the ones are entropy-like function and square of Euclidean norm. The saddle-point Mirror Descent algorithm application to robust PageRank leads to concrete complexity results, which are being discussed alongside with illustrative numerical example.

Sobre autores

A. Nazin

Trapeznikov Institute of Control Sciences; National Research University Higher School of Economics

Autor responsável pela correspondência
Email: nazine@ipu.ru
Rússia, Moscow; Moscow

A. Tremba

Trapeznikov Institute of Control Sciences; National Research University Higher School of Economics

Email: nazine@ipu.ru
Rússia, Moscow; Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016