Minimax Rate of Testing in Sparse Linear Regression
- Authors: Carpentier A.1, Collier O.2, Comminges L.3, Tsybakov A.B.4, Wang Y.5
- 
							Affiliations: 
							- University of Magdeburg
- Modal’X, Université Paris-Nanterre è CREST
- CEREMADE, Université Paris-Dauphine è CREST
- CREST, ENSAE
- LIDS-IDSS, MIT
 
- Issue: Vol 80, No 10 (2019)
- Pages: 1817-1834
- Section: Topical Issue
- URL: https://journals.rcsi.science/0005-1179/article/view/151188
- DOI: https://doi.org/10.1134/S0005117919100047
- ID: 151188
Cite item
Abstract
We consider the problem of testing the hypothesis that the parameter of linear regression model is 0 against an s-sparse alternative separated from 0 in the l2-distance. We show that, in Gaussian linear regression model with p < n, where p is the dimension of the parameter and n is the sample size, the non-asymptotic minimax rate of testing has the form \(\sqrt {\left( {s/n} \right)\log \left( {\sqrt p /s} \right)}\). We also show that this is the minimax rate of estimation of the l2-norm of the regression parameter.
Keywords
About the authors
A. Carpentier
University of Magdeburg
							Author for correspondence.
							Email: alexandra.carpentier@ovgu.de
				                					                																			                												                	Germany, 							Magdeburg						
O. Collier
Modal’X, Université Paris-Nanterre è CREST
														Email: alexandra.carpentier@ovgu.de
				                					                																			                												                	France, 							Paris						
L. Comminges
CEREMADE, Université Paris-Dauphine è CREST
														Email: alexandra.carpentier@ovgu.de
				                					                																			                												                	France, 							Paris						
A. B. Tsybakov
CREST, ENSAE
														Email: alexandra.carpentier@ovgu.de
				                					                																			                												                	France, 							Paris						
Yu. Wang
LIDS-IDSS, MIT
														Email: alexandra.carpentier@ovgu.de
				                					                																			                												                	United States, 							Cambridge, MA						
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				 
  
  
  
  
  Email this article
			Email this article  Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					