Minimax Rate of Testing in Sparse Linear Regression


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the problem of testing the hypothesis that the parameter of linear regression model is 0 against an s-sparse alternative separated from 0 in the l2-distance. We show that, in Gaussian linear regression model with p < n, where p is the dimension of the parameter and n is the sample size, the non-asymptotic minimax rate of testing has the form \(\sqrt {\left( {s/n} \right)\log \left( {\sqrt p /s} \right)}\). We also show that this is the minimax rate of estimation of the l2-norm of the regression parameter.

作者简介

A. Carpentier

University of Magdeburg

编辑信件的主要联系方式.
Email: alexandra.carpentier@ovgu.de
德国, Magdeburg

O. Collier

Modal’X, Université Paris-Nanterre è CREST

Email: alexandra.carpentier@ovgu.de
法国, Paris

L. Comminges

CEREMADE, Université Paris-Dauphine è CREST

Email: alexandra.carpentier@ovgu.de
法国, Paris

A. Tsybakov

CREST, ENSAE

Email: alexandra.carpentier@ovgu.de
法国, Paris

Yu. Wang

LIDS-IDSS, MIT

Email: alexandra.carpentier@ovgu.de
美国, Cambridge, MA

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019