Stabilization of Oscillations in a Periodic System by Choosing Appropriate Couplings
- Авторы: Barabanov I.N.1, Tkhai V.N.1
- 
							Учреждения: 
							- V.A. Trapeznikov Institute of Control Sciences
 
- Выпуск: Том 79, № 12 (2018)
- Страницы: 2128-2135
- Раздел: Nonlinear Systems
- URL: https://journals.rcsi.science/0005-1179/article/view/151089
- DOI: https://doi.org/10.1134/S0005117918120032
- ID: 151089
Цитировать
Аннотация
We study a model containing coupled subsystems (MCCS) defined by a system of ordinary differential equations, where subsystems are systems of autonomous ordinary differential equations. The model splits into unrelated systems when the numerical parameter that characterizes couplings is ε = 0, and the couplings are given by time-periodic functions. We solve the natural stabilization problem which consists in finding relationships that simultaneously guarantee the existence and asymptotic stability of MCCS oscillations. We generalize results previously obtained for the case of two coupled subsystems each of which is defined on its own plane.
Ключевые слова
Об авторах
I. Barabanov
V.A. Trapeznikov Institute of Control Sciences
							Автор, ответственный за переписку.
							Email: ivbar@ipu.ru
				                					                																			                												                	Россия, 							Moscow						
V. Tkhai
V.A. Trapeznikov Institute of Control Sciences
														Email: ivbar@ipu.ru
				                					                																			                												                	Россия, 							Moscow						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					