Stabilization of Oscillations in a Periodic System by Choosing Appropriate Couplings
- Авторы: Barabanov I.N.1, Tkhai V.N.1
-
Учреждения:
- V.A. Trapeznikov Institute of Control Sciences
- Выпуск: Том 79, № 12 (2018)
- Страницы: 2128-2135
- Раздел: Nonlinear Systems
- URL: https://journals.rcsi.science/0005-1179/article/view/151089
- DOI: https://doi.org/10.1134/S0005117918120032
- ID: 151089
Цитировать
Аннотация
We study a model containing coupled subsystems (MCCS) defined by a system of ordinary differential equations, where subsystems are systems of autonomous ordinary differential equations. The model splits into unrelated systems when the numerical parameter that characterizes couplings is ε = 0, and the couplings are given by time-periodic functions. We solve the natural stabilization problem which consists in finding relationships that simultaneously guarantee the existence and asymptotic stability of MCCS oscillations. We generalize results previously obtained for the case of two coupled subsystems each of which is defined on its own plane.
Ключевые слова
Об авторах
I. Barabanov
V.A. Trapeznikov Institute of Control Sciences
Автор, ответственный за переписку.
Email: ivbar@ipu.ru
Россия, Moscow
V. Tkhai
V.A. Trapeznikov Institute of Control Sciences
Email: ivbar@ipu.ru
Россия, Moscow
Дополнительные файлы
