Segmentation and Hashing of Time Series in Stock Market Prediction


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, we associate each time series of a stock price (TS-P) in a stock market with a time series of hash codes (TS-HC) that indicate price increase or decrease for each element of the TS-P. As noted, in this case hash codes represent integer numbers and their sequence allows to identify the same (typical) groups of TS-P elements in the stock price dynamics. We describe the procedures for transforming an initial time series and calculating the hash codes. The main properties of a sequence of hash codes are established. Finally, we suggest an analysis and prediction method for a stock price trajectory using segmentation and hashing data.

Sobre autores

A. Spiro

Trapeznikov Institute of Control Sciences

Autor responsável pela correspondência
Email: arn.spi@mail.ru
Rússia, Moscow

M. Gol’dovskaya

Trapeznikov Institute of Control Sciences

Email: arn.spi@mail.ru
Rússia, Moscow

N. Kiseleva

Trapeznikov Institute of Control Sciences

Email: arn.spi@mail.ru
Rússia, Moscow

I. Pokrovskaya

Trapeznikov Institute of Control Sciences

Email: arn.spi@mail.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018