DARK MATTER HALOS IN NUMERICAL MODELS AT REDSHIFTS 0 ≤ z ≤ 9

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For the numerical model in the range of redshifts \(0 \leqslant z \leqslant 9\), we examined the properties and evolution of dark matter haloes using a previously proposed method of compact analysis that allows separating the influence of random and regular factors on the main characteristics of the dark matter halo. In the investigated range of redshifts, a monotonic evolution of the average values of the basic parameters of small halo structures into a central massive object is observed through sequential hierarchical merging. These basic parameters include the circular velocity \( {{{v}}_{c}} \), the parameter \( {{w}_{c}} = {{{v}}_{c}}{\text{/}}r \), and the mass. In the range \(3 \leqslant z \leqslant 9\), the parameters evolve slowly, while in the range \(0 \leqslant z \leqslant 3\), they evolve rapidly. The evolution of the dark matter halos formed before reionization is characterized by a slow change in their average characteristics and the properties of the halo outskirts. The important role of early-formed massive structural elements is emphasized.

作者简介

Marek Demyanskii

Institute of theoretical physics, University of Warsaw; Department of Astronomy, Williams College

编辑信件的主要联系方式.
Email: astrep@pleiadesonline.com
Poland, Warsaw; USA, Williamstown

Andrei Doroshkevich

P.N. Lebedev physical institute of Russian Academy of Sciences; National Research Center “Kurchatov Institute”

Email: astrep@pleiadesonline.com
Russia, Moscow; Russia, Moscow

Tatiana Larchenkova

P.N. Lebedev physical institute of Russian Academy of Sciences

Email: astrep@pleiadesonline.com
Russia, Moscow

Sergey Pilipenko

P.N. Lebedev physical institute of Russian Academy of Sciences

Email: astrep@pleiadesonline.com
Russia, Moscow

参考

  1. E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, et al., Astrophys. J. Suppl. 192, 18 (2011).
  2. P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, et al., Astron. and Astrophys. 594, 13 (2016).
  3. N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, et al., Astron. and Astrophys. 641, id. A6 (2020).
  4. D. J. Eisenstein, I. Zehavi, D. W. Hogg, R. Scoccimarro, et al., Astrophys. J. 633, 560 (2005).
  5. A. Cuceu, J. Farr, P. Lemos, and A. Font-Ribera, J. Cosmology and Astroparticle Phys. № 10, id. 044 (2019).
  6. V. Bromm and N. Yoshida, Ann. Rev. Astron. Astrophys. 49 (1), 373 (2011), arXiv:1102.4638 [astro-ph.CO].
  7. M. McQuinn, Ann. Rev. Astron. Astrophys. 54, 313 (2016).
  8. J. Bullock and M. Boylan-Kolchin, Ann. Rev. Astron. Astrophys. 55(1), 343 (2017).
  9. А. В. Засов, А. С. Сабурова, А. В. Хоперсков, С. А. Хо-персков, Успехи физ. наук 187 (1), 3 (2017).
  10. T. Naab and J. P. Ostriker, Ann. Rev. Astron. Astrophys. 55, 59 (2017).
  11. J. Tumlinson, M. S. Peebles, and J. K. Werk, Ann. Rev. Astron. Astrophys. 55(1), 389 (2017).
  12. R. Wechsler and J. Tinker, Ann. Rev. Astron. Astrophys. 56, 435 (2018).
  13. P. Salucci, Astron. and Astrophys. Rev. 27 (1), id. 2 (2019).
  14. J. Zavala and C. S. Frenk, Galaxies 7 (4), 81 (2019).
  15. J. D. Simon, Ann. Rev. Astron. Astrophys. 57, 375 (2019).
  16. I. de Martino, S. S. Chakrabarty, V. Cesare, A. Gallo, L. Ostorero, and A. Diaferio, Universe 6 (8), 107 (2020).
  17. L. Lovisari, S. Ettori, M. Gaspari, and P. A. Giles, Universe 7 (5), 139 (2021).
  18. S. Paduroiu, Universe 8 (2), 76 (2022).
  19. R. E. Angulo and O. Hahn, Liv. Rev. Computational Astrophys. 8 (1), id. 1 (2022).
  20. J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay, Astrophys. J. 304, 15 (1986).
  21. S. Chandrasekhar, Rev. Modern Physics 15 (1), 1 (1943).
  22. D. Lynden-Bell, Monthly Not. Roy. Astron. Soc. 136, 101 (1967).
  23. Ya. B. Zel’dovich, Astron. and Astrophys. 5, 84 (1970).
  24. А. Г. Дорошкевич, Астрон. журн. 57, 259 (1980).
  25. J. Fillmore and P. Goldreich, Astrophys. J. 281, 1 (1984).
  26. A. V. Gurevich and K. P. Zybin, Physics Uspekhi 38, 687 (1995).
  27. M. Demiański and A. G. Doroshkevich, Monthly Not. Roy. Astron. Soc. 306(4), 779 (1999).
  28. M. Demiański and A. G. Doroshkevich, Astron. and Astrophys. 422, 423 (2004).
  29. S. Hirano, N. Yoshida, Y. Sakurai, and M. S. Fujii, A-strophys. J. 855 (1), id. 17 (2018).
  30. W. H. Press and P. Schechter, Astrophys. J. 187, 425 (1974).
  31. J. R. Bond, S. Cole, G. Efstathiou, and N. Kaiser, Astrophys. J. 379, 440 (1991).
  32. R. K. Sheth and G. Tormen, Monthly Not. Roy. Astron. Soc. 329 (1), 61 (2002).
  33. R. K. Sheth, Monthly Not. Roy. Astron. Soc. 345 (4), 1200 (2003).
  34. R. K. Sheth and G. Tormen, Monthly Not. Roy. Astron. Soc. 350 (4), 1385 (2004).
  35. R. K. Sheth and G. Tormen, Monthly Not. Roy. Astron. Soc. 349 (4), 1464 (2004).
  36. J. Diemand, M. Kuhlen, and P. Madau, Astrophys. J. 667 (2), 859 (2007).
  37. M. Vogelsberger and S. White, Monthly Not. Roy. Astron. Soc. 413, 1419 (2011).
  38. A. Klypin, S. Trujillo-Gomez, and J. Primack, Astrophys. J. 740, id. 102 (2011).
  39. M. G. Walker, M. Mateo, E. W. Olszewski, J. Penarrubia, N. W. Evans, and G. Gilmore, Astrophys. J. 704 (2), 1274 (2009).
  40. M. S. Pawlowski, J. Pflamm-Altenburg, and P. Kroupa, Monthly Not. Roy. Astron. Soc. 423 (2), 1109 (2012).
  41. M. Demiański, A. G. Doroshkevich, S. Pilipenko, and S. Gottlober, Monthly Not. Roy. Astron. Soc. 414, 1813 (2011).
  42. J. Stücker, R. E. Angulo, O. Hahn, and S. D. M. White, Monthly Not. Roy. Astron. Soc. 509 (2), 1703 (2022).
  43. P. J. E. Peebles, Astrophys. J. 155, 393 (1969).
  44. А. Г. Дорошкевич, Астрофизика 6, 581 (1970).
  45. S. White, Astrophys. J. 286, 38 (1984).
  46. V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, et al., Monthly Not. Roy. Astron. Soc. 391, 1685 (2008).
  47. T. Ishiyama, Astrophys. J. 788, id. 27 (2014).
  48. M. Boylan-Kolchin, V. Springel, S. White, A. Jenkins, and G. Lemson, Monthly Not. Roy. Astron. Soc. 398, 1150 (2009).
  49. A. Klypin, G. Yepes, S. Gottloeber, F. Prada, and S. Hess, Monthly Not. Roy. Astron. Soc. 457, 4340 (2016).
  50. T. J. Armitage, D. J. Harnes, S. T. Kay, Y. M. Bahe, C. Dalla Vecchia, R. A. Crain, and T. Theuns, Monthly Not. Roy. Astron. Soc. 474 (3), 3746 (2018).
  51. J. Wang, S. Bose, C. Frenk, L. Gao, A. Jenkins, V. Springel, and S. D. M. White, Nature 585, 39 (2020).
  52. A. E. Bayer, A. Banerjee, and Yu. Feng, J. Cosmology and Astroparticle Phys. № 01, id. 016 (2021).
  53. B. Faure, F. Bournaud, J. Fensch, E. Daddi, M. Behrendt, A. Burkert, and J. Richard, Monthly Not. Roy. Astron. Soc. 502 (3), 4641 (2021).
  54. M. Demiański, A. Doroshkevich, T. Larchenkova, and S. Pilipenko, Monthly Not. Roy. Astron. Soc. 525(2), 1922 (2023).
  55. J. Shull, B. D. Smith, and C. W. Danforth, Astrophys. J. 759 (1), id. 23 (2012).
  56. J. A. S. Fortunato, W. S. Hipólito-Ricaldi, and M. V. dos Santos, arXiv:2307.04711 [astro-ph.CO] (2023).
  57. T. Lemos, R. S. Goncalves, J. C. Carvalho, and J. S. Alcaniz, arXiv:2307.06911 [astro-ph.CO] (2023).
  58. M. Ayromlou, D. Nelson, and A. Pillepich, Monthly Not. Roy. Astron. Soc. 524 (4), 5391 (2022), arXiv:2211.07659 [astro-ph.GA].
  59. B. Wang and J.-J. Wei, Astrophys. J. 944 (1), id. 50 (2023), arXiv:2211.02209 [astro-ph.CO].
  60. I. Labbe, P. van Dokkum, E. Nelson, R. Bezanson, et al., Nature 616(7956), 266 (2023).
  61. M. Xiao, P. Oesch, D. Elbaz, L. Bing, et al., arXiv:2309.02492 [astro-ph.GA] (2023).
  62. S. Fujimoto, R. Bezanson, I. Labbe, G. Brammer, et al., arXiv:2309.07834 [astro-ph.GA] (2023).
  63. C. T. Donnan, D. J. McLeod, R. J. McLure, J. S. Dunlop, A. C. Carnall, F. Cullen, and D. Magee, Monthly Not. Roy. Astron. Soc. 520 (3), 4554 (2023).
  64. D. J. McLeod, C. T. Donnan, R. J. McLure, J. S. Dunlop, et al., arXiv:2304.14469 [astro-ph.GA] (2023).
  65. N. Menci, M. Castellano, P. Santini, E. Merlin, A. Fontana, and F. Shankar, Astrophys. J. 938 (1), id. L5 (2022).
  66. M. Castellano, A. Fontana, T. Treu, E. Merlin, et al., Astrophys. J. 948 (2), id. L14 (2023).
  67. E. Di Valentino, L. A. Anchordoqui, O. Akarsu, Y. Ali-Haimoud, et al., Astroparticle Phys. 131, id. 102606 (2021), arXiv:2008.11283 [astro-ph.CO].
  68. E. Di Valentino, L. A. Anchordoqui, O. Akarsu, Y. Ali-Haimoud, et al., Astroparticle Phys. 131, id. 102605 (2021), arXiv:2008.11284 [astro-ph.CO].
  69. E. Di Valentino, L. A. Anchordoqui, O. Akarsu, Y. Ali-Haimoud, et al., Astroparticle Phys. 131, id. 102604 (2021), arXiv:2008.11285 [astro-ph.CO].
  70. L. A. Anchordoqui, E. Di Valentino, S. Pan, and W. Yang, J. High Energy Astrophys. 32, 28 (2021).
  71. W. Beenakker and D. Venhoek, arXiv:2101.01372 [astro-ph.CO] (2021).
  72. М. Демянский, А. Г. Дорошкевич, Т. Ларченкова, С. Пи-липенко, Астрон. журн. 99 (9), 719 (2022).
  73. J. F. Navarro, C. S. Frenk, and S. D. M. White, Monthly Not. Roy. Astron. Soc. 275 (3), 720 (1995).
  74. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490 (2), 493 (1997).
  75. М. И. Демянский, А. Г. Дорошкевич, Т. И. Ларченкова, Письма в Астрон. журн. 48 (7), 475 (2022).
  76. М. И. Демянский, А. Г. Дорошкевич, Т. И. Ларченкова, Астрон. журн. 100(5), 395 (2023).
  77. M. Ramella, M. J. Geller, and J. P. Huchra, Astrophys. J. 384, 396 (1992).
  78. A. J. Kelly, A. Jenkins, A. Deason, A. Fattahi, R. J. J. Grand, R. Pakmor, V. Springel, and C. S. Frenk, Monthly Not. Roy. Astron. Soc. 514 (3), 3113 (2022).
  79. A. Doroshkevich, D. L. Tucker, S. Allam, and M. J. Way, Astron. and Astrophys. 418, 7 (2004).
  80. J. Sommer-Larsen, S. Gelato, and H. Vedel, Astrophys. J. 519 (2), 501 (1999).
  81. A. Chiti, A. Frebel, J. D. Simon, D. Erkal, et al., Nature Astron. 5, 392 (2021).
  82. A. Chiti, J. D. Simon, A. Frebel, A. B. Pace, A. P. Ji, and T. S. Li, Astrophys. J. 939 (1), id. 41 (2022).
  83. D. Makarov and I. Karachentsev, Monthly Not. Roy. Astron. Soc. 412 (4), 2498 (2011).
  84. M. Ginolfi, E. Piconcelli, L. Zappacosta, G. C. Jones, et al., arXiv:2208.03248 [astro-ph.GA] (2022).
  85. A. Boksenberg and W. L. W. Sargent, Astrophys. J. Suppl. 218 (1), id. 7 (2015), arXiv:1410.3784 [astro-ph.GA].

补充文件

附件文件
动作
1. JATS XML
2.

下载 (102KB)

版权所有 © М. Демянский, А. Дорошкевич, Т. Ларченкова, С. Пилипенко, 2023

##common.cookie##