Possibilities of the Phase-Contrast X-Ray Method in a Laboratory Astrophysical Experiment on the Study of Plasma Instabilities

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, a computational-theoretical analysis of the possibilities of using the method of phase-contrast X-ray radiography for the study of low-contrast turbulent flows in laser plasma in experiments with astrophysical similarity is carried out. By modeling the passage of hard coherent X-ray radiation through test objects, we studied the parameters of a laboratory experiment that affect the contrast and resolution of the resulting phase-contrast images. The limiting scale for measuring the frequency-spatial spectrum of image power was determined, on which the manifestation of artifacts from the superimposition of diffraction effects from neighboring objects is not yet critical for the correct interpretation of the results. Optimal object-detector distances are found that provide resolution of the power spectrum of a turbulent flow on micron scales. These results are relevant for future laboratory experiments on the development of instabilities in plasma with astrophysical similarity up to the stage of energy dissipation.

作者简介

S. Makarov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: seomakarov28@gmail.com
Moscow, Russia

S. Pikuz

Joint Institute for High Temperatures, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: seomakarov28@gmail.com
Moscow, Russia

参考

  1. T. A. Pikuz, A. Y. Faenov, N. Ozaki, N. J. Hartley, et al., J. Appl. Phys. 120, 035901 (2016).
  2. L. Gaus, L. Bischoff, M. Bussmann, E. Cunningham, et al., Phys. Rev. Res. 3, 043194 (2021).
  3. T. Kluge, M. Rödel, J. Metzkes-Ng, A. Pelka, et al., Phys. Rev. X. 8, 31068 (2018).
  4. S. H. Glenzer, L. B. Fletcher, E. Galtier, B. Nagler, et al., J. Phys. B At. Mol. Opt. Phys. 49, 092001 (2016).
  5. В. В. Королев, Е. О. Васильев, И. Г. Коваленко, Ю. А. Щекинов, Астрон. журн. 92, 559–577 (2015).
  6. D. Ryutov, R. P. Drake, J. Kane, E. Liang, B. A. Remington, W. M. Wood-Vasey, Astrophys. J. 518, 821–832 (1999).
  7. É. Falize, C. Michaut, S. Bouquet, Astrophys. J. 730, 96 (2011).
  8. A. R. Miles, Astrophys. J. 696, 498–514 (2009).
  9. Crab Nebula, (available at http://www.nasa.gov/sites/default/files/images/430453main_crabmosaic_hst_big_full.jpg).
  10. S. R. Nagel, K. S. Raman, C. M. Huntington, S. A. Maclaren, et al., Phys. Plasmas. 24, 072704 (2017).
  11. A. Casner, G. Rigon, B. Albertazzi, T. Michel, et al., High Power Laser Sci. Eng. 6, e44 (2018).
  12. G. Rigon, B. Albertazzi, T. Pikuz, P. Mabey, et al., Nat. Commun. 12, 2679 (2021).
  13. M. J. E. Manuel, B. Khiar, G. Rigon, B. Albertazzi, et al., Matter Radiat. Extrem. 6, 026904 (2021).
  14. G. Rigon, A. Casner, B. Albertazzi, T. Michel, et al., Phys. Rev. E. 100, 021201 (2019).
  15. K. H. Kiyani, K. T. Osman, S. C. Chapman, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373, 20140155 (2015).
  16. B. Burkhart, A. Lazarian, V. Ossenkopf, J. Stutzki, A-strophys. J. 771, 123 (2013).
  17. A. S. Watson, C. W. Smith, A. V. Marchuk, M. R. Argall, C. J. Joyce, P. A. Isenberg, B. J. Vasquez, N. A. Schwadron, M. Bzowski, M. A. Kubiak, N. Murphy, Astrophys. J. 927, 43 (2022).
  18. P. Tzeferacos, A. Rigby, A. F. A. Bott, A. R. Bell, et al., Nat. Commun. 9, 591 (2018).
  19. T. G. White, M. T. Oliver, P. Mabey, M. Kühn-Kauffeldt, et al., Nat. Commun. 10, 1758 (2019).
  20. F. Fiuza, G. F. Swadling, A. Grassi, H. G. Rinderknecht, et al., Nat. Phys. 16, 916–920 (2020).
  21. L. Samoylova, A. Buzmakov, O. Chubar, H. Sinn, J. A-ppl. Crystallogr. 49, 1347–1355 (2016).
  22. O. Chubar, P. Elleaume, Conf. Proc. C 980622, 1177–1179 (1998).

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (2MB)
4.

下载 (525KB)
5.

下载 (1MB)
6.

下载 (297KB)
7.

下载 (162KB)
8.

下载 (1MB)

版权所有 © С.С. Макаров, С.А. Пикуз, 2023

##common.cookie##