PROSPECTS FOR OBSERVING BINARY SUPERMASSIVE BLACK HOLES WITH THE SPACE RADIOINTERFEROMETER

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A list of candidates for binary supermassive black holes, compiled from available data on optical band variability and emission spectrum shape, has been analysed. An artificial neural network has been constructed to estimate the radiation fluxes at the frequency 240 GHz. For those candidates of binary supermassive black holes for which the network building procedure proved possible, the criterion of possibility to observe the source at the Millimetron Space Observatory was tested. The result of this study is presented as a table of 17 candidates for binary supermassive black holes. Confirmation (or refutation) of the binarity of these objects by means of observational data commited on a space interferometer with parameters similar to those of the Millimetron Space Observatory will be an important milestone in the development of the theory of galaxy formation.

Palavras-chave

Sobre autores

A. Malinovsky

Astrospace Center of the P.N. Lebedev Physical Institute, Russian Academy of Sciences

Autor responsável pela correspondência
Email: amalin@asc.rssi.ru
Russia, Moscow

E. Mikheeva

Astrospace Center of the P.N. Lebedev Physical Institute, Russian Academy of Sciences

Autor responsável pela correspondência
Email: helen@asc.rssi.ru
Russia, Moscow

Bibliografia

  1. R. Abuter, A. Amorim, M. Bauböck, J. P. Berger, et al., Astron. and Astrophys. 636, id. L5 (2020).
  2. M. Ghez, S. Salim, N. N. Weinberg, J. R. Lu, et al., Astrophys. J. 689, 1044 (2008).
  3. K. Gültekin, D. O. Richstone, K. Gebhardt, T. R. Lauer, et al., Astrophys. J. 698, 198 (2009).
  4. R. P. Saglia, M. Opitsch, P. Erwin, J. Thomas, et al., Astrophys. J. 818, id. 47 (2016).
  5. R. C. E. van den Bosch, Astrophys. J. 831, id. 134 (2016).
  6. Y.-K. Huang, C. Hu, Y.-L. Zhao, Z.-X. Zhang, et al., Astrophys. J. 876, id. 102 (2019).
  7. K. Akiyama, A. Alberdi, W. Alef, K. Asada, et al., Astrophys. J. 875, id. L4 (2019).
  8. K. Akiyama, A. Alberdi, W. Alef, K. Asada, et al., Astrophys. J. 930, id. 12 (2022).
  9. R. Malbon, C. M. Baugh, C. S. Frenk and C. G. Lacey, Monthly Not. Roy. Astron. Soc. 382, 1394 (2007).
  10. J. Kormendy, R. Bender, J. Magorrian, S. Tremaine, et al., Astrophys. J. 482, L139 (1997).
  11. S. Tremaine, K. Gebhardt, R. Bender, G. Bower, et al., Astrophys. J. 574, 740 (2002).
  12. A. Lapi, S. Raimundo, R. Aversa, Z.-Y. Cai, et al., Astrophys. J. 783, id. 69 (2014).
  13. A. Pensabene, S. Carniani, M. Perna, G. Cresci, et al., Astron. and Astrophys. 637, id. A84 (2020).
  14. R. Tripodi, F. Lelli, C. Feruglio, F. Fiore, F. Fontanot, M. Bischetti, and R. Maiolino, arXiv:2301.07023 [astro-ph.GA] (2023).
  15. M. Volonteri, Astron. and Astrophys. Rev. 18, 279 (2010).
  16. M. Volonteri, F. Haardt, and P. Madau, Astrophys. J. 582, 559 (2003).
  17. M. C. Begelman, R. D. Blandford, and M. J. Rees, Nature 287, 307 (1980).
  18. K. Rubinur, M. Das, and P. Kharb, J. Astrophys. and Astron. 39, id. 8 (2018).
  19. A. De Rosa, C. Vignali, T. Bogdanovic, P. R. Capelo, et al., New Astron. Rev. 86, id. 101525 (2019).
  20. R. Roskar, D. Fiacconi, L. Mayer, S. Kazantzidis, et al., Monthly Not. Roy. Astron. Soc. 449, 494 (2015).
  21. M. Volonteri, M. Habouzit, and M. Colpi, Nature Rev. Phys. 3, 732 (2021).
  22. M. Volonteri, J. M. Miller, and M. Dotti, Astrophys. J. 703, L86 (2009).
  23. A. Sesana, C. Roedig, M. T. Reynolds, and M. Dotti, Monthly Not. Roy. Astron. Soc. 420, 860 (2012).
  24. L. Z. Kelley, Z. Haiman, A. Sesana, and L. Hernquist, Monthly Not. Roy. Astron. Soc. 485, 1579 (2019).
  25. J. H. Krolik, M. Volonteri, Y. Dubois, and J. Devriendt, Astrophys. J. 879, id. 110 (2019).
  26. Е. В. Михеева, В. Н. Лукаш, С. В. Репин, А. М. Малиновский, Астрон. журн. 96(4), 339 (2019).
  27. M. J. Valtonen, H. J. Lehto, K. Nilsson, J. Heidt, et al., Nature 452, 851 (2008).
  28. П. Б. Иванов, Е. В. Михеева, В. Н. Лукаш, А. М. Малиновский, С. В. Чернов, А. С. Андрианов, В. И. Костенко, С. Ф. Лихачев, Успехи физ. наук 189, 449 (2019).
  29. M. J. Graham, S. G. Djorgovski, D. Stern, A. J. Drake, et al., Monthly Not. Roy. Astron. Soc. 453, 1562 (2015).
  30. M. Charisi, I. Bartos, Z. Haiman, A. M. Price-Whelan, et al., Monthly Not. Roy. Astron. Soc. 463, 2145 (2016).
  31. H. L. Maness, G. B. Taylor, R. T. Zavala, A. B. Peck, et al., Astrophys. J. 602, 123 (2004).
  32. C. Rodriguez, G. B. Taylor, R. T. Zavala, A. B. Peck, et al., Astrophys. J. 646, 49 (2006).
  33. X. Liu, Y. Shen, F. Bian, A. Loeb, et al., Astrophys. J. 789, id. 140 (2014).
  34. H. Guo, X. Liu, Y. Shen, A. Loeb, et al., Monthly Not. Roy. Astron. Soc. 482, 3288 (2019).
  35. R. Decarli, M. Dotti, C. Montuori, T. Liimets, et al., Astrophys. J. 720, L93 (2010).
  36. M. Eracleous, T. A. Boroson, J. P. Halpern, and J. Liu, Astrophys. J. Suppl. 201, id. 23 (2012).
  37. R. P. Deane, Z. Paragi, M. J. Jarvis, M. Coriat, et al., Nature 511, 57 (2014).
  38. A. Cavaliere, M. Tavani, and V. Vittorini, Astrophys. J. 836, id. 220 (2017).
  39. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, et al., a-rXiv:1603.04467 [cs.DC] (2015).
  40. C. Caprini and D. G. Figueroa, Classical and Quantum Gravity 35, id. 163001 (2018).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (442KB)
3.

Baixar (407KB)
4.

Baixar (417KB)
5.

Baixar (262KB)
6.

Baixar (236KB)
7.

Baixar (227KB)

Declaração de direitos autorais © А.М. Малиновский, Е.В. Михеева, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies