Principles of the wave dark matter detection in gravitational redshift experiments in the Solar System

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We explore the possibility of using measurements of the gravitational redshift effect as a means to constrain wave dark matter – a class of models in which the dark matter is accounted for by light scalar particles that behave like classical waves. We construct a mathematical framework that is appropriate for clock comparison experiments with remote clocks and can be used to determine the values of the coupling constants of such dark matter with particles of the Standard Model. Using this framework, we consider an experiment to detect dark matter of the Galactic halo using two satellites equipped with accurate and stable atomic clocks and placed into elliptical heliocentric orbits. We demonstrate that, in most cases, the accuracy of this experiment turns out to be not better than that of ground-based experiments with colocated clocks. The limitation of theaccuracy of the space-based experiment is found to be due to the non-relativistic Doppler compensation system, required when using moving clocks, which decreases the amplitude of the useful signal. Possible solutions to this problem are discussed.

Негізгі сөздер

Авторлар туралы

S. Pilipenko

P. N. Lebedev Physical Institute of the Russian academy of Sciences

Хат алмасуға жауапты Автор.
Email: spilipenko@asc.rssi.ru
Ресей, Moscow

D. Litvinov

P. N. Lebedev Physical Institute of the Russian academy of Sciences

Email: spilipenko@asc.rssi.ru
Ресей, Moscow

M. Zakhvatkin

P. N. Lebedev Physical Institute of the Russian academy of Sciences; Keldysh Institute of Applied Mathematics

Email: spilipenko@asc.rssi.ru
Ресей, Moscow; Moscow

A. Filetkin

P. N. Lebedev Physical Institute of the Russian academy of Sciences; Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: spilipenko@asc.rssi.ru
Ресей, Moscow; Moscow

Әдебиет тізімі

  1. L. Hui, Ann. Rev. Astron. Astrophys. 59, 247 (2021), arXiv:2101.11735 [astro-ph.CO].
  2. K. Van Tilburg, N. Leefer, L. Bougas, and D. Budker, Phys. Rev. Letters 115, id. 011802 (2015), arXiv:1503.06886 [physics.atom-ph].
  3. A. Hees, J. Guéna, M. Abgrall, S. Bize, and P. Wolf, Phys. Rev. Letters 117(6), id. 061301 (2016), arXiv:1604.08514 [gr-qc].
  4. P. Wcisło, P. Ablewski, K. Beloy, S. Bilicki et al., Science Advances 4(12), id. eaau4869 (2018).
  5. C.J. Kennedy, E. Oelker, J.M. Robinson, T. Bothwell, et al., Phys. Rev. Letters 125(20), id. 201302 (2020), arXiv:2008.08773 [physics.atom-ph].
  6. S.M. Vermeulen, P. Relton, H. Grote, V. Raymond, et al., Nature 600(7889), 424 (2021), arXiv:2103.03783 [gr-qc].
  7. D.E. Kaplan, A. Mitridate, and T. Trickle, Phys. Rev. D 106(3), id. 035032 (2022).
  8. L. Bernus, O. Minazzoli, A. Fienga, A. Hees, M. Gastineau, J. Laskar, P. Deram, and A. Di Ruscio, Phys. Rev. D 105(4), id. 044057 (2022).
  9. S. Schlamminger, K.Y. Choi, T.A. Wagner, J.H. Gundlach, and E. G. Adelberger, Phys. Rev. Letters 100, id. 041101 (2008), arXiv:0712.0607 [gr-qc].
  10. T.A. Wagner, S. Schlamminger, J.H. Gundlach, and E.G. Adelberger, Classical and Quantum Gravity 29(18), id. 184002 (2012), arXiv:1207.2442 [gr-qc].
  11. J. Bergé, P. Brax, G. Métris, M. Pernot-Borrás, P. Touboul, and J.-P. Uzan, Phys. Rev. Letters 120(14), id. 141101 (2018), arXiv:1712.00483 [gr-qc].
  12. T. Bothwell, D. Kedar, E. Oelker, J.M. Robinson, S.L. Bromley, W. L. Tew, J. Ye, and C. J. Kennedy, Metrologia 56(6), id. 065004 (2019).
  13. K. Kim, A. Aeppli, T. Bothwell, and J. Ye, Phys. Rev. Letters 130(11), id. 113203 (2023).
  14. A. Arvanitaki, J. Huang, and K. Van Tilburg, Phys. Rev. D 91(1), id. 015015 (2015), arXiv:1405.2925 [hep-ph].
  15. A. Derevianko, Phys. Rev. A 97(4), id. 042506 (2018), arXiv:1605.09717 [physics.atom-ph].
  16. B.M. Roberts, G. Blewitt, C. Dailey, M. Murphy, et al., Nature Comm. 8, id. 1195 (2017), arXiv:1704.06844 [hep-ph].
  17. V. Schkolnik, D. Budker, O. Fartmann, V. Flambaum, et al., Quantum Sci. Technology 8(1), id. 014003 (2023), arXiv:2204.09611 [physics.atom-ph].
  18. A. Hees, O. Minazzoli, E. Savalle, Y.V. Stadnik, and P. Wolf, Phys. Rev. D 98(6), id. 064051 (2018), arXiv:1807.04512 [gr-qc].
  19. J. Veltmaat, B. Schwabe, and J.C. Niemeyer, Phys. Rev. D 101(8), id. 083518 (2020), arXiv:1911.09614 [astro-ph.CO].
  20. Y.-D. Tsai, J. Eby, and M.S. Safronova, Nature Astron. 7, 113 (2023), arXiv:2112.07674 [hep-ph].
  21. Y.A. El-Neaj, C. Alpigiani, S. Amairi- Pyka, H. Araújo, et al., EPJ Quantum Technology 7(1), id. 6 (2020).
  22. C.M. Will, Liv. Rev. Relativity 17(1), 4 (2014).
  23. R.F.C. Vessot, M.W. Levine, E.M. Mattison, E.L. Blomberg, Phys. Rev. Letters 45, 2081 (1980).
  24. D.A. Litvinov, V.N. Rudenko, A.V. Alakoz, U. Bach, et al., Phys. Letters A 382(33), 2192 (2018).
  25. P. Delva, N. Puchades, E. Schönemann, F. Dilssner, et al., Phys. Rev. Letters 121(23), id. 231101 (2018), arXiv:1812.03711 [gr-qc].
  26. S. Herrmann, F. Finke, M. Lülf, O. Kichakova, et al., Phys. Rev. Letters 121(23), id. 231102 (2018).
  27. P. Jetzer, Intern. J. Modern Physics D 26(5), 1741014 (2017).
  28. B. Altschul, Q.G. Bailey, L. Blanchet, K. Bongs, et al., Adv. Space Research 55(1), 501 (2015), arXiv:1404.4307 [gr-qc].
  29. M.P. Heß, L. Stringhetti, B. Hummelsberger, K. Hausner, et al., Acta Astronautica, 69, 929 (2011).
  30. D. Litvinov and S. Pilipenko, Classical and Quantum Gravity 38(13), id. 135010 (2021), arXiv:2108.09723 [gr-qc].
  31. A. Derevianko, K. Gibble, L. Hollberg, N.R. Newbury, C. Oates, M.S. Safronova, L.C. Sinclair, and N. Yu, Quantum Sci. Technology 7(4), id. 044002 (2022).
  32. J. Jaffe and R.F. Vessot, Phys. Rev. D 14(12), 3294 (1976).
  33. S. Turyshev, M. Shao, K. Nordtvedt, H. Dittus, et al., Exp. Astron. 27, 27 (2009).
  34. W.-T. Ni, Intern. J. Modern Physics D 17(7), 921 (2008).
  35. Y.V. Stadnik and V.V. Flambaum, Phys. Rev. Letters 115(20), id. 201301 (2015).
  36. G. P. Centers, J.W. Blanchard, J. Conrad, N.L. Figueroa, et al., Nature Comm. 12, id. 7321 (2021), arXiv:1905.13650 [astro-ph.CO].
  37. A.K. Drukier, K. Freese, and D.N. Spergel, Phys. Rev. D 33(12), 3495 (1986).
  38. N.W. Evans, C.A.J. O’Hare, and C. McCabe, Phys. Rev. D 99(2), id. 023012 (2019).
  39. C.A.J. O’Hare, N.W. Evans, C. McCabe, G. Myeong, and V. Belokurov, Phys. Rev. D 101, id. 023006 (2020).
  40. T. Flacke, C. Frugiuele, E. Fuchs, R.S. Gupta, and G. Perez, J. High Energy Phys. 2017(6), id. 50 (2017).
  41. T. Damour and J.F. Donoghue, Phys. Rev. D 82(8), id. 084033 (2010), arXiv:1007.2792 [gr-qc].
  42. T. Damour and J.F. Donoghue, Classical and Quantum Gravity 27(20), id. 202001 (2010).
  43. V. Dzuba and V. Flambaum, Phys. Rev. A 77(1), id. 012515 (2008).
  44. J. Guéna, M. Abgrall, D. Rovera, P. Rosenbusch, M.E. Tobar, P. Laurent, A. Clairon, and S. Bize, Phys. Rev. Letters 109(8), id. 080801 (2012), arXiv:1205.4235 [physics.atom-ph].
  45. A. Hees, O. Minazzoli, E. Savalle, Y. V. Stadnik, P. Wolf, and B. Roberts, arXiv:1905.08524 [gr-qc] (2019).
  46. N. Ashby, in Proc. of the 1998 IEEE Intern. Frequency Control Symp. (Cat. No.98CH36165), p. 320 (1998).
  47. L. Blanchet, C. Salomon, P. Teyssandier, and P. Wolf, Astron. and Astrophys. 370(1), 320 (2001).
  48. D. Litvinov, Astron. Letters 50(4), 55 (2024).
  49. R.F.C. Vessot and M.W. Levine, General Relativ. and Gravit. 10, 181 (1979).
  50. A. Khmelnitsky and V. Rubakov, J. Cosmology and Astroparticle Phys. 2014(2), id. 019 (2014), arXiv:1309.5888 [astro-ph.CO].
  51. L. Liu, D.-S. Lü, W.-B. Chen, T. Li, et al., Nature Comm. 9(1), 2760 (2018).
  52. H.L. van Trees, K.L. Bell, and Z. Tian, Detection, Estimation, and Modulation Theory. Part 1. Detection, Estimation, and Filtering Theory, 2nd ed. (New York, USA: Wiley, 2013).
  53. Z. Kang, S. Bettadpur, P. Nagel, H. Save, S. Poole, and N. Pie, J. Geodesy 94(9), id. 85 (2020).
  54. K. Abich, A. Abramovici, B. Amparan, A. Baatzsch, et al., Phys. Rev. Letters 123(3), id. 031101 (2019).
  55. P. Kurczynski, M.D. Johnson, S.S. Doeleman, K. Haworth, et al., in Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave 12 180, 189 (2022).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Supplementary
Жүктеу (1MB)

© The Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>