DISTANT TRANS-NEPTUNIAN OBJECTS IN THE SOLAR SYSTEM WITH ADDITIONAL OUTER PLANETS
- Authors: Emel’yanenko V.V.1
-
Affiliations:
- Institute of Astronomy of the RAS
- Issue: Vol 102, No 12 (2025)
- Pages: 1172–1179
- Section: Articles
- URL: https://journals.rcsi.science/0004-6299/article/view/361621
- DOI: https://doi.org/10.7868/S3034518925120117
- ID: 361621
Cite item
Abstract
Numerical simulations of the evolution of the Solar system consisting at the initial stage of five, six, seven and eight outer planets, as well as a self-gravitating planetesimal disk, were carried out. The dynamical evolution of planetary systems was studied over a time interval of 4 Gyr. In most cases of numerical simulations, either the destruction of planetary systems or the transition of planets to orbits significantly different from modern orbits occurred. However, a number of successful variants were found in which the configuration of the orbits of the outer planets after 4 Gyr was close to the present Solar system. The ejection of additional planets can occur at all stages of the evolution of the Solar system. In the variant with eight planets, a case of an additional planet remaining in a distant trans-Neptunian orbit with a perihelion distance of q = 120 au was found. Despite the great diversity of evolutionary paths of systems with additional planets, distant trans-Neptunian objects were registered in all successful variants. A trend towards an increase in the number of surviving distant trans-Neptunian objects with an increase in the number of additional planets was noted.
About the authors
V. V. Emel’yanenko
Institute of Astronomy of the RAS
Email: vvemel@inasan.ru
Moscow, Russia
References
- D. Nesvorný and A. Morbidelli, Astron. J. 144, 117 (2012).
- D. Nesvorný, Astrophys. J. 742, id. L22 (2011).
- K. Batygin, M.E. Brown, and H. Betts, Astrophys. J. 744, id. L3 (2012).
- D. Nesvorný, D. Vokrouhlický, and A. Morbidelly, Astrophys. J. 768, id. 45 (2013).
- D. Nesvorný, D. Vokrouhlický, and R. Deienno, Astrophys. J. 784, id. 22 (2014).
- R. Deienno, D. Nesvorný, D. Vokrouhlický, and T. Yokoyama, Astron. J. 148, id. 25 (2014).
- D. Nesvorný, D. Vokrouhlický, R. Deienno, and K.J. Walsh, Astron. J. 148, id. 52 (2014).
- R. Cloutier, D. Tamayo, and D. Valencia, Astrophys. J. 813, id. 8 (2015)
- D. Nesvorný, Astron. J. 150, id. 68 (2015).
- D. Nesvorný, Astron. J. 150, id. 73 (2015).
- D. Nesvorný and D. Vokrouhlický, Astrophys. J. 825, id. 94 (2016).
- F. Roig and D. Nesvorný, Astron. J. 150, id. 186 (2015).
- D. Vokrouhlický, W.F. Bottke, and D. Nesvorný, Astron. J. 152, id. 39 (2016).
- V.V. Emel’yanenko, Astron. and Astrophys. 662, id. L4 (2022).
- A. Morbidelli, K. Tsiganis, A. Crida, H.F. Levison, and R. Gomes, Astron. J. 134, 1790 (2007).
- K. Batygin and M.E. Brown, Astrophys. J. 716, 1323 (2010).
- M.S. Clement, R. Deienno, N.A. Kaib, A. Izidoro. S.N. Raymond, and J.E. Chambers, Icarus 367, id. 114556 (2021).
- M.S. Clement, S.N. Raymond, N.A. Kaib, R. Deienno, J.E. Chambers, and A. Izidoro, Icarus 355, id. 114122 (2021).
- J.C.B. Papaloizou and J.D. Larwood, Monthly Not. Roy. Astron. Soc. 315, 823 (2000).
- V.V. Emel’yanenko, Solar System Research 46, 321 (2012).
- V.V. Emel’yanenko, Celestial Mechanics and Dynamical Astronomy 98, 191 (2007).
- K. Silsbee and S. Tremaine, Astron. J. 155, id. 75 (2018).
- D. Nesvorny, Ann. Rev. Astron. and Astropys. 56, 137 (2018).
- R. Ribeiro de Sousa, A. Morbidelli, S.N. Raymond, A. Izidoro, R. Gomes, and E. Vieira Neto, Icarus 339, id. 113605 (2020).
- M.E. Brown and K. Batygin, Astron. J. 162, id. 219 (2021).
Supplementary files


