DISTANT TRANS-NEPTUNIAN OBJECTS IN THE SOLAR SYSTEM WITH ADDITIONAL OUTER PLANETS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Numerical simulations of the evolution of the Solar system consisting at the initial stage of five, six, seven and eight outer planets, as well as a self-gravitating planetesimal disk, were carried out. The dynamical evolution of planetary systems was studied over a time interval of 4 Gyr. In most cases of numerical simulations, either the destruction of planetary systems or the transition of planets to orbits significantly different from modern orbits occurred. However, a number of successful variants were found in which the configuration of the orbits of the outer planets after 4 Gyr was close to the present Solar system. The ejection of additional planets can occur at all stages of the evolution of the Solar system. In the variant with eight planets, a case of an additional planet remaining in a distant trans-Neptunian orbit with a perihelion distance of q = 120 au was found. Despite the great diversity of evolutionary paths of systems with additional planets, distant trans-Neptunian objects were registered in all successful variants. A trend towards an increase in the number of surviving distant trans-Neptunian objects with an increase in the number of additional planets was noted.

About the authors

V. V. Emel’yanenko

Institute of Astronomy of the RAS

Email: vvemel@inasan.ru
Moscow, Russia

References

  1. D. Nesvorný and A. Morbidelli, Astron. J. 144, 117 (2012).
  2. D. Nesvorný, Astrophys. J. 742, id. L22 (2011).
  3. K. Batygin, M.E. Brown, and H. Betts, Astrophys. J. 744, id. L3 (2012).
  4. D. Nesvorný, D. Vokrouhlický, and A. Morbidelly, Astrophys. J. 768, id. 45 (2013).
  5. D. Nesvorný, D. Vokrouhlický, and R. Deienno, Astrophys. J. 784, id. 22 (2014).
  6. R. Deienno, D. Nesvorný, D. Vokrouhlický, and T. Yokoyama, Astron. J. 148, id. 25 (2014).
  7. D. Nesvorný, D. Vokrouhlický, R. Deienno, and K.J. Walsh, Astron. J. 148, id. 52 (2014).
  8. R. Cloutier, D. Tamayo, and D. Valencia, Astrophys. J. 813, id. 8 (2015)
  9. D. Nesvorný, Astron. J. 150, id. 68 (2015).
  10. D. Nesvorný, Astron. J. 150, id. 73 (2015).
  11. D. Nesvorný and D. Vokrouhlický, Astrophys. J. 825, id. 94 (2016).
  12. F. Roig and D. Nesvorný, Astron. J. 150, id. 186 (2015).
  13. D. Vokrouhlický, W.F. Bottke, and D. Nesvorný, Astron. J. 152, id. 39 (2016).
  14. V.V. Emel’yanenko, Astron. and Astrophys. 662, id. L4 (2022).
  15. A. Morbidelli, K. Tsiganis, A. Crida, H.F. Levison, and R. Gomes, Astron. J. 134, 1790 (2007).
  16. K. Batygin and M.E. Brown, Astrophys. J. 716, 1323 (2010).
  17. M.S. Clement, R. Deienno, N.A. Kaib, A. Izidoro. S.N. Raymond, and J.E. Chambers, Icarus 367, id. 114556 (2021).
  18. M.S. Clement, S.N. Raymond, N.A. Kaib, R. Deienno, J.E. Chambers, and A. Izidoro, Icarus 355, id. 114122 (2021).
  19. J.C.B. Papaloizou and J.D. Larwood, Monthly Not. Roy. Astron. Soc. 315, 823 (2000).
  20. V.V. Emel’yanenko, Solar System Research 46, 321 (2012).
  21. V.V. Emel’yanenko, Celestial Mechanics and Dynamical Astronomy 98, 191 (2007).
  22. K. Silsbee and S. Tremaine, Astron. J. 155, id. 75 (2018).
  23. D. Nesvorny, Ann. Rev. Astron. and Astropys. 56, 137 (2018).
  24. R. Ribeiro de Sousa, A. Morbidelli, S.N. Raymond, A. Izidoro, R. Gomes, and E. Vieira Neto, Icarus 339, id. 113605 (2020).
  25. M.E. Brown and K. Batygin, Astron. J. 162, id. 219 (2021).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).