Investigation of the temporal variations in scattering and dispersion measure of Giant Radio Pulses in the pulsar в0531+21 in the Crab Nebula at 111 MHz frequency in 2002–2024

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present in the article the results of our monitoring of Giant Radio Pulses (GRPs) of pulsar B0531+21 (J0534+2200) in the Crab Nebula. Observations has been carried in the PRAO ASC LPI using the BSA LPI radio telescope at 111 MHz frequency at bandwith 2.5 MHz with a 128-channel spectrum analyzer and PRAO Digital Pulsar Receiver in 2002–2024. It is shown that the dependence between the scattering time τ and the dispersion measue DM of GRPs in the period 2010–2021 differs significantly from that before 2010 and after 2021. In 2010–2021 the values of τ and DM demonstrated significant growth and instability, and the functional relationship between them changes rapidly. The data for the entire observation period forms on plot of {τ, dm } (where dm = ( DM56.7) × 10 3 ) three main and one transitional branches, formed by 14 different time segments. Thay may be well approximated by power functions τ ∝ dmn with values n = 0.7, 1.1 and 1.86 for the main and 2.1 for the transitional branches. This behavior of τ and DM is explained by anomalous variations in the density and turbulence of magnetically active plasma in the Crab Nebula and the interstellar medium in 2010–2021. Comparing the data at 111 and 610 MHz in the period MJD 55000–56500 (June 2009 – July 2013), we obtained an estimate β = 3.4 ± 0.2 for the dependence of observed scattering on the frequency τ ∝ ν−β. This value is close to the previously published, but significantly differs from the dependencies for both Kolmogorov (β = 4.4) and normal distribution (β = 4) of spatial inhomogeneities of the interstellar medium.

Full Text

Restricted Access

About the authors

B. Ya. Losovsky

Lebedev Physical Institute of Russian Academy of Sciences

Author for correspondence.
Email: blos@prao.ru

Pushchino Radio Astronomy Observatory, Astro Space Center

Russian Federation, Pushchino

V. A. Potapov

Lebedev Physical Institute of Russian Academy of Sciences

Email: potap@prao.ru

Pushchino Radio Astronomy Observatory, Astro Space Center

Russian Federation, Pushchino

References

  1. D. H. Staelin and E. C. Reifenstein, Science 162(3861), 1481 (1968).
  2. A. G. Lyne and F. Graham-Smith, Pulsar Astronomy (Cambridge University Press, 2006), p. 247.
  3. J. M. Rankin and C. C. Counselman, Astrophys. J. 181, 875 (1973).
  4. R. Isaacman and J. M. Rankin, Astrophys. J. 214(1), 214 (1977).
  5. I. P. Williamson, Monthly Not. Roy. Astron. Soc. 166, 499 (1974).
  6. J. W. McKee, A. G. Lyne, B. W. Stappers, C. G. Bassa, and C. A. Jordan, Monthly Not. Roy. Astron. Soc. 479(3), 4216 (2018).
  7. А. А. Ершов, Письма в Астрон. журн. 47(9), 657 (2021).
  8. A. G. Lyne and D. J. Thorne, Monthly Not. Roy. Astron. Soc. 172, 97 (1975).
  9. A. A. Kuz'min, B. Ya. Losovsky, C. A. Jordan, and F. G. Smith, Astron. and Astrophys. 483(1), 13 (2008).
  10. A. G. Rudnitskii, M. V. Popov, and V. A. Soglasnov, Astron. Rep. 61(5), 393 (2017).
  11. S. W. Ellingson, T. E. Clarke, J. Craig, B. C. Hicks, T. J. W. La zio, G. B. Taylor, T. L. Wilson, and C. N. Wolfe, 768(2), Astrophys. J. 136 (2013).
  12. T. Eftekhari, K. Stovall, J. Dowell, F. K. Schinzel, and G. B. Taylor, 829(2), Astrophys. J. 62 (2016).
  13. R. Karuppusamy, B. W. Stappers, and K. J. Lee, Astron. and Astrophys. 538, id. A7 (2012).
  14. М. В. Попов, А. Д. Кузьмин, О. М. Ульянов, А. А. Дешпанде, и др., Астрон. журн. 83(7), 630 (2006).
  15. А. Д. Кузьмин, Ю. А. Беляцкий, Д. В. Думский, В. А. Извекова, К. А. Лапаев, С. В. Логвиненко, Б. Я. Лосовский, В. Д. Пугачев, Астрон. журн. 88, 454 (2011).
  16. A . N. Kazantsev, V. A. Potapov, M. S. Pshirkov, and B. Ya. Lo sovskii, arXiv:1905.05261 [astro-ph.HE] (2019).
  17. Б. Я. Лосовский, Д. В. Думский, Ю. А. Беляцкий, Астрон. журн. 96(10), 815 (2019).
  18. B. Ya. Losovsky, Intern. J. Astron. and Astrophys. 11(4), 470 (2021).
  19. Т. В. Смирнова и С. В. Логвиненко, Астрон. журн. 86(4), 370 (2009).
  20. M. Popov, V. Soglasnov, V. Kondratiev, A. Bilous, et al. , Publ. Astron. Soc. Japan 61(6), 1197 (2009).
  21. A. D. Kuz'min and V. A. Izvekova, Monthly Not. Roy. Astron. Soc. 360, 726 (1993).
  22. R. N. Manchester, Astrophys. Space Sci. 278(1/2), 33 (2001) .
  23. A. D. Kuzmin, V. I. Kondrat'ev, S. V. Kostyuk, B. Ya. Losovsky, M. V. Popov, V. A. Soglasnov, N. D'Amico, and S. Montebugnoly, Astron. Letters 28(4), 251 (2002).
  24. В. Л. Гинзбург, Теоретическая физика и астрофизика (М.: Наука, 1981).
  25. Р. Манчестер и Дж. Тейлор, Пульсары (М.: Мир, 1980).
  26. O. Löhmer, M. Kramer, D. Mitra, D. R. Lorimer, and A. G. Lyne, Astrophys. J. 562(2), L157 (2001).
  27. J. M. Cordes, J. M. Weisberg, and V. Boriakoff, Astrophys. J. 288, 221 (1985).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The Crab Nebula GR obtained at BSA and CPP on 26/07/2024, normalized to a frequency of 111.879 MHz. The figure shows the observed GR (circles) and the function inscribed in it, obtained by formula (1), simulating a pulse with τ = 17.48 ms, scattered in the frequency channel band of 2.4576 kHz (solid red line). The abscissa axis shows time in milliseconds, the ordinate axis shows the normalized flux density.

Download (79KB)
3. Fig. 2. Changes in the scattering τ and the dispersion measure DM of the 111 MHz pulsar in the KT in the period 2002–2024. The abscissa axis shows the observation epoch in modified Julian days, the ordinate axis shows the scattering τ [ms] (left axis, triangles) and the conditional dispersion measure dm = (DM – 56.7) × 103 [0.001 pc/cm3 ] (right axis, circles). The vertical dashed lines indicate the moments of transition between different branches on the graph of the dependence of τ on DM (see below Fig. 3 and Table 1), corresponding to the transition from the quiet to the disturbed regime in the variations of the values ​​of τ and DM in MJD 55203, and the reverse transition in MJD 59375. Note also that the moments of transition are close to the local maxima of τ and, in the case of the first transition, also to the maximum of DM.

Download (137KB)
4. Fig. 3. Statistical dependence of the scattering τ (in milliseconds) at a frequency of 111 MHz on the conditional dispersion measure dm = (DM – 56.7) × 103 [0.001 pc/cm3] of the pulsar in KT in the period September 2002–January 2024. The main branches of the dependence (see legend): lower (1), two upper (2, 3) and transition branch (4).

Download (162KB)
5. Supplement
Download (125KB)

Copyright (c) 2024 The Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».