Interpretation of the transit light curve in the presence of one principal minimum taking into account the eccentricity of the transit (planet) orbit
- Authors: Abubekerov M.K.1, Gostev N.Y.1
-
Affiliations:
- Lomonosov Moscow State University, Sternberg Astronomical Institute
- Issue: Vol 101, No 7 (2024)
- Pages: 608-617
- Section: Articles
- URL: https://journals.rcsi.science/0004-6299/article/view/274291
- DOI: https://doi.org/10.31857/S0004629924070028
- EDN: https://elibrary.ru/IVCBAE
- ID: 274291
Cite item
Abstract
Using a high-precision algorithm for interpreting transit light curves in a model of a classical eclipsing binary star-exoplanet system, we investigated the possibility of determining the system parameters in the absence of a priori knowledge of the orbital eccentricity. It was shown that it is impossible to determine the exact value of the eccentricity and periastron longitude based on the main minimum of the transit light curve alone. Also, with an observational accuracy of about 1% of the eclipse depth, the uncertainty in the eccentricity and periastron longitude together causes a significant uncertainty in the values of the component radii (an error of 2–3 times relative to the true values) and the orbital inclination angle. However, the ratios of the system component radii and the limb darkening coefficients are determined with good accuracy. With an increase in the observational accuracy to 0.1% of the eclipse depth, it becomes possible to determine the component radii and the orbital inclination angle when interpreting the light curve taking into account the eccentricity.
Full Text

About the authors
M. K. Abubekerov
Lomonosov Moscow State University, Sternberg Astronomical Institute
Author for correspondence.
Email: marat@sai.msu.ru
Russian Federation, Moscow
N. Yu. Gostev
Lomonosov Moscow State University, Sternberg Astronomical Institute
Email: ngostev@mail.ru
Russian Federation, Moscow
References
- Д. Я. Мартынов, Затменные переменные звезды, под ред. В. П. Цесевича (М.: Наука, 1971).
- М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук, Астрон. журн. 85(2), 121 (2008).
- М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук, Астрон. журн. 86(8), 778 (2009).
- М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук, Астрон. журн. 87(12), 1199 (2010).
- M. K. Abubekerov and N. Yu. Gostev, Monthly Not. Roy. Astron. Soc. 432(3), 2216 (2013).
- M. K. Abubekerov and N. Yu. Gostev, Astron. and Astrophys. 633, id. A96 (2020).
- M. K. Abubekerov and N. Yu. Gostev, Monthly Not. Roy. Astron. Soc. 459(2), 2078 (2016).
- Н. Ю. Гостев, Астрон. журн. 88, 704 (2011).
- T. M. Brown, D. Charbonneau, R. L. Gilliland, R. W. Noyes, and A. Burrows, 552(2), 699 (2001).
- D. G. Koch, W. J. Borucki, J. F. Rowe, N. M. Batalha, et al., 713(2), L131 (2010).
- E. W. Dunham, W. J. Borucki, D. G. Koch, N. M. Batalha, et al., 713(2), L136 (2010).
- D. W. Latham, W. J. Borucki, D. G. Koch, T. M. Brown, et al., Astrophys.J. 713(2), L140 (2010).
- J. Southworth, P. J. Wheatley, and G. Sams, Monthly Not. Roy. Astron. Soc. 379(1), L11 (2007).
- Е. В. Бекесов, М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук, Астрон. журн. 100(11), 964 (2023).
Supplementary files
