On the possibility of studying the effect of magnetic reconnection in a laboratory astrophysical experiment using X-ray emission L-spectra of multiply charged ions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper considers the application of X-ray spectroscopy with high spatial resolution for investigation of magnetic reconnection in laboratory astrophysical experiments carried out on laser facilities of nano- and pico-second duration at moderate laser intensity on the target <1018 W/cm2. A brief overview of commonly used experimental schemes is given. We present atomic kinetic calculations for the spectra from the L-shells of Ne- and F-like iron ions (Fe, Z = 26), which demonstrate the high sensitivity of the spectra to changes in plasma parameters. An analysis of the range of applicability of various diagnostic approaches to assessing the electron temperature and laser plasma density is carried out. It is shown that transition lines in Ne-like ions are a universal tool for measuring plasma parameters, both in the region of laser interaction with the target and in the reconnection zone.

Авторлар туралы

М. Alkhimova

Joint Institute for High Temperature of RAS

Хат алмасуға жауапты Автор.
Email: maryalkhimova@ihed.ras.ru
Ресей, Moscow

S. Makarov

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
Ресей, Moscow

I. Skobelev

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
Ресей, Moscow

S. Ryazantsev

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
Ресей, Moscow

E. Filippov

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
Ресей, Moscow

Әдебиет тізімі

  1. G. H. Miller, Opt. Eng. 43, 2841 (2004).
  2. N. Fleurot, C. Cavailler, J. L. Bourgade, Fusion Eng. Des. 74, 147–154 (2005).
  3. S. G. Garanin, F. A. Starikov, R. A. Shnyagin, Opt. Spectrosc. 114, 851–858 (2013).
  4. M. Yamada, R. Kulsrud, H. Ji, Rev. Mod. Phys. 82, 603–664 (2010).
  5. P. Helander, L.-G. Eriksson, F. Andersson, Plasma Phys. Control. Fusion. 44, B247–B262 (2002).
  6. J. T. Gosling, Space Sci. Rev. 172, 187–200 (2012).
  7. Somov B. V., Plasma Astrophysics, Part II: Reconnection and Flares (Springer, 2006).
  8. M. Bárta, M. Karlický, R. Žemlička, Sol. Phys. 253, 173–189 (2008).
  9. X. Cheng, J. Zhang, Y. Liu, M. D. Ding, Astrophys. J. 732, L25 (2011).
  10. X. Cheng, Y. Li, L. F. Wan, M. D. Ding, P. F. Chen, J. Zhang, J. J. Liu, Astrophys. J. 866, 64 (2018).
  11. P. Pagano, D. H. Mackay, S. Poedts, Astron. and Astrophys. 554, A77 (2013).
  12. J. Lin, Y. ‐K. Ko, L. Sui, J. C. Raymond, G. A. Stenborg, Y. Jiang, S. Zhao, S. Mancuso, Astrophys. J. 622, 1251–1264 (2005).
  13. L. K. S. Daldorff, J. E. Leake, J. A. Klimchuk, Astrophys. J. 927, 196 (2022).
  14. А.Retinò, D. Sundkvist, A. Vaivads, F. Mozer, M. André, C. J. Owen, Nat. Phys. 3, 235–238 (2007).
  15. P. Louarn, N. Andre, C. M. Jackman, S. Kasahara, E. A. Kronberg, M. F. Vogt, Space Sci. Rev. 187, 181–227 (2015).
  16. J. Varela, V. Réville, A. S. Brun, P. Zarka, F. Pantellini, Astron. and Astrophys. 616, A182 (2018).
  17. V. Semenov, S. Dyadechkin, B. Punsly, Science 80, 305, 978–980 (2004).
  18. Y. Lyubarsky, Astrophys. J. 897, 1 (2020).
  19. M. Lyutikov, Monthly Not. Roy. Astron. Soc. 346, 540–554 (2003).
  20. M. Hesse, P. A. Cassak, J. Geophys. Res. Sp. Phys., in press, doi: 10.1029/2018JA025935.
  21. C. T. Russell, M. A. Saunders, J. L. Phillips, J. A. Fedder, J. Geophys. Res. 91, 1417 (1986).
  22. O. Price, G. H. Jones, J. Morrill, M. Owens, K. Battams, H. Morgan, M. Drückmuller, S. Deiries, Icarus 319, 540–557 (2019).
  23. Л. В. Франк, А.Г., Артемьев, А.В., Зеленый, ЖЭТФ 150, 807–825 (2016).
  24. S. Y. Bogdanov, G. V. Dreǐden, V. S. Markov, G. V. Ostrov-skaya, A. G. Frank, Plasma Phys. Reports 32, 1034–1046 (2006).
  25. N. Katz, J. Egedal, W. Fox, A. Le, J. Bonde, A. Vrublevskis, Phys. Rev. Lett. 104, 255004 (2010).
  26. W. Fox, F. Sciortino, A. v. Stechow, J. Jara-Almonte, J. Yoo, H. Ji, M. Yamada, Phys. Rev. Lett. 118, 125002 (2017).
  27. J. D. Hare, L. Suttle, S. V. Lebedev, N. F. Loureiro, et L., Phys. Rev. Lett. 118, 085001 (2017).
  28. А.Ishizawa, R. Horiuchi, Phys. Rev. Lett. 95, 045003 (2005).
  29. M. Hesse, T. Neukirch, K. Schindler, M. Kuznetsova, S. Zenitani, Space Sci. Rev. 160, 3–23 (2011).
  30. S. V Bulanov, Plasma Phys. Control. Fusion. 59, 014029 (2017).
  31. K. Burdonov, A. Fazzini, V. Lelasseux, J. Albrecht, et al., Matter Radiat. Extrem. 6, doi: 10.1063/5.0065138 (2021).
  32. А. Г. Франк, Успехи физических наук. 53, 941–947 (2010).
  33. Y. H. Liu, P. Cassak, X. Li, M. Hesse, S. C. Lin, K. Genestreti, Commun. Phys. 2022 51, 5, 1–9 (2022).
  34. J. Qiu, W. Liu, N. Hill, M. Kazachenko, Astrophys. J. 725, 319–330 (2010).
  35. K. J. Trattner, J. S. Mulcock, S. M. Petrinec, S. A. Fuselier, Geophys. Res. Lett. 34, L03108 (2007).
  36. M. Yamada, J. Yoo, J. Jara-Almonte, H. Ji, R. M. Kulsrud, C. E. Myers, Nat. Commun. 5, doi: 10.1038/ncomms5774 (2014).
  37. É. Falize, C. Michaut, S. Bouquet, Astrophys. J. 730, 96 (2011).
  38. L. Willingale, P. M. Nilson, M. C. Kaluza, A. E. Dangor, et al., Phys. Plasmas. 17, doi: 10.1063/1.3377787 (2010).
  39. S. Bolaños, A. Sladkov, R. Smets, S. N. Chen, et al., J. Fuchs, Nat. Commun. 13, 6426 (2022).
  40. P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, et al., Phys. Rev. Lett. 97, 255001 (2006).
  41. B. K. F. Young, A. L. Osterheld, D. F. Price, R. Shepherd, et al., Rev. Sci. Instrum. 69, 4049–4053 (1998).
  42. W. Fox, A. Bhattacharjee, K. Germaschewski, Phys. Rev. Lett. 106, 215003 (2011).
  43. W. Fox, A. Bhattacharjee, K. Germaschewski, Phys. Plasmas. 19, doi: 10.1063/1.3694119 (2012).
  44. M. Øieroset, T. D. Phan, R. Ergun, N. Ahmadi, et al., Phys. Plasmas. 28, doi: 10.1063/5.0072182 (2021).
  45. D. I. Pontin, E. R. Priest Magnetic reconnection: MHD theory and modelling (Springer International Publishing; vol. 19, 2022).
  46. Y. Kuramitsu, T. Moritaka, Y. Sakawa, T. Morita, et al., Nat. Commun. 9, 5109 (2018).
  47. W. Liu, Q. Chen, V. Petrosian, Astrophys. J. 767, 168 (2013).
  48. G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.- Y. Chang, K. Germaschewski, S. X. Hu, P. M. Nilson, Phys. Rev. Lett. 113, 105003 (2014).
  49. J. Zhong, Y. Li, X. Wang, J. Wang, Q. Dong, et al., Nat. Phys. 6, 984–987 (2010).
  50. W. Daughton, J. Scudder, H. Karimabadi, Phys. Plasmas. 13, doi: 10.1063/1.2218817 (2006).
  51. F. Ebrahimi, R. Raman, Phys. Rev. Lett. 114, 205003 (2015).
  52. K. Sakai, T. Moritaka, T. Morita, K. Tomita, et al., Sci. Rep. 12, 10921 (2022).
  53. Y. Kuramitsu, Y. Sakawa, J. N. Waugh, C. D. Gregory, T. Morita, S. Dono, H. Aoki, H. Tanji, B. Loupias, M. Koenig, N. Woolsey, H. Takabe, Astrophys. J. 707, L137–L141 (2009).
  54. P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, et al., Phys. Plasmas 15, doi: 10.1063/1.2966115 (2008).
  55. Q.-L. Dong, S.-J. Wang, Q.-M. Lu, C. Huang, et al., Phys. Rev. Lett. 108, 215001 (2012).
  56. C. K. Li, F. H. Séguin, J. A. Frenje, J. R. Rygg, R. D. Petrasso, R. P. J. Town, O. L. Landen, J. P. Knauer, V. A. Smalyuk, Phys. Rev. Lett. 99, 055001 (2007).
  57. X. X. Pei, J. Y. Zhong, Y. Sakawa, Z. Zhang, et al., Phys. Plasmas 23, doi: 10.1063/1.4944928 (2016).
  58. А.Chien, L. Gao, S. Zhang, H. Ji, E. G. Blackman, et al., Nat. Phys. 192, 19, 254–262 (2023).
  59. J. P. Geindre, P. Audebert, A. Rousse, J. C. Gauthier, A. Y. Faenov, T. A. Pikuz, S. A. Pikuz, T. A. Shelkovenko, Phys. Scr. 53, 645–647 (1996).
  60. А.Y. Faenov, S. A. Pikuz, A. I. Erko, B. A. Bryunetkin, et al., Phys. Scr. 50, 333–338 (1994).
  61. S. A. Pikuz, I. Y. Skobelev, M. A. Alkhimova, G. V. Pokrovskii, et al., JETP Lett. 105, 13–17 (2017).
  62. S. N. Ryazantsev, A. S. Martynenko, M. V Sedov, I. Y. Skobelev, et al., Plasma Phys. Control. Fusion. 64, 105016 (2022).
  63. M. A. Alkhimova, A. Y. Faenov, I. Y. Skobelev, T. A. Pikuz, et al., Opt. Express. 25, 29501 (2017).
  64. E. D. Filippov, K. F. Burdonov, T. A. Pikuz, I. Y. Skobelev, Symmetry (Basel) 14, 1–21 (2022).
  65. E. D. Filippov, S. S. Makarov, K. F. Burdonov, W. Yao, et al., Sci. Rep. 11, 8180 (2021).
  66. E. D. Filippov, M. Khan, A. Tentori, P. Gajdos, et al., Matter Radiat. Extrem. 8, 065602 (2023).
  67. V. M. Dyakin, A. I. Magunov, T. A. Pikuz, I. Y. Skobelev, A. Y. Faenov, J. Wolowski, E. Woryna, P. Parys, T. Pisarczyk, Quantum Electron. 25, 690–694 (1995).
  68. C. Y. Chien, J. C. Kieffer, O. Peyrusse, D. Gilles, M. Chaker, J. S. Coe, G. Mourou, Y. Beaudoin, Opt. Lett. 18, 1535 (1993).
  69. Z. Jiang, J. C. Kieffer, J. P. Matte, M. Chaker, O. Peyrusse, D. Gilles, G. Korn, A. Maksimchuk, S. Coe, G. Mourou, Phys. Plasmas 2, 1702–1711 (1995).
  70. V. A. Boiko, A. V. Vinogradov, S. A. Pikuz, I. Y. Skobelev, A. Y. Faenov, J. Sov. Laser Res. 6, 85–290 (1985).
  71. C. Kaur, S. Chaurasia, N. Singh, J. Pasley, S. Aggarwal, M. Mohan, Phys. Plasmas 26, doi: 10.1063/1.5051758 (2019).
  72. G. V. Brown, P. Beiersdorfer, D. A. Liedahl, K. Widmann, S. M. Kahn, E. J. Clothiaux, Astrophys. J. Suppl. Ser. 140, doi: 10.1086/339374 (2002).
  73. E. V. Marley, D. A. Liedahl, M. B. Schneider, R. F. Heeter, et al., Rev. Sci. Instrum. 89, 1–5 (2018).
  74. J. J. MacFarlane, I. E. Golovkin, P. R. Woodruff, D. R. Welch, B. V. Oliver, T. A. Melhorn, R. B. Campbell, T. A. Mehlhorn, R. B. Campbell Proc. Inert. Fusion Sci. Appl. (American Nucl. Soc. La Grange Park, IL, 1–4, 2003).
  75. E. D. Filippov, I. Y. Skobelev, G. Revet, S. N. Chen, B. Khiar, A. Ciardi, D. Khaghani, D. P. Higginson, S. A. Pikuz, J. Fuchs, Matter Radiat. Extrem. 4, doi: 10.1063/1.5124350 (2019).
  76. B. Khiar, G. Revet, A. Ciardi, K. Burdonov, et al., Phys. Rev. Lett. 123, 205001 (2019).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© The Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».