The role of Biermann battery mechanism in appearance of magnetic fields in accretion discs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

At present, there is little doubt that accretion discs surrounding compact astrophysical objects such as black holes, white dwarfs and neutron stars may have magnetic field structures. Thus, they explain the transfer of angular momentum between different parts of the disc and some other processes. There are various ways to explain the occurrence of these magnetic fields. In this paper we study the possibility of generation of magnetic fields due to the Biermann battery mechanism. It is associated with radial flows of protons and electrons. Due to their different masses, they interact differently with the rotating medium, producing circular currents that generate magnetic fields. Previously, a similar process was studied for galactic discs and it was shown that the battery mechanism can generate initial magnetic fields in such objects. Here we discuss the action of the Biermann battery for accretion disks. This requires solving an integral equation of the second kind, which arises if we take into account the self-interaction of the magnetic field. It is shown that corresponding fields are quite significant and can play an important role in the evolution of magnetic fields in discs.

About the authors

R. R. Andreasyan

Ambartsumian Byurakan Astrophysical Observatory of NAS RA

Author for correspondence.
Email: astrep@pleiadesonline.com
Armenia, Byurakan

I. K. Marchevsky

Bauman Moscow State Technical University

Email: astrep@pleiadesonline.com
Russian Federation, Moscow

E. A. Mikhailov

Lomonosov Moscow State University; Lebedev Physical Institute of RAS

Email: astrep@pleiadesonline.com
Russian Federation, Moscow; Moscow

References

  1. N. I. Shakura and R. A. Sunyaev, Astron. and Astrophys. 337, 24 (1973).
  2. R. Tylenda, Acta Astronautica 31, 127 (1981).
  3. B.T. Gänsicke, T.R. Marsh, J. Southworth, and A. Rebassa-Mansergas, Science 314 (5807), 1908 (2006).
  4. S.H. Lubow, J.C.B. Papaloizou, and J.E. Pringle, Monthly Not. Roy. Astron. Soc. 267(2), 235 (1994).
  5. S. Okuzumi, T. Takeuchi, and T. Muto, 785(2), id. 127 (2014).
  6. U. Torkelsson and A. Brandenburg, Astron. and Astrophys. 283, 677 (1994).
  7. G. Rüdiger, D. Elstner, and T. F. Stepinski, Astron. and Astrophys. 298, 934 (1995).
  8. M. Reyes-Ruiz and T. F. Stepinski, Astron. and Astrophys. 342, 892 (1999).
  9. С. А. Молчанов, А. А. Рузмайкин, Д. Д. Соколов, Успехи физ. наук 145(4), 593 (1985).
  10. Я. Б. Зельдович, А. А. Рузмайкин, Д. Д. Соколов, Магнитные поля в астрофизике (Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика», Ин-т компьютерных исследований, 2006).
  11. Д. Д. Соколов, Успехи физ. наук 185(6), 643 (2015).
  12. D. Moss, D. Sokoloff, and V. Suleimanov, Astron. and Astrophys. 588, id. A18 (2016).
  13. D. Boneva, E. Mikhailov, M. Pashentseva, D. Sokoloff, Astron. and Astrophys. 652, id. A38 (2021).
  14. L. Biermann and A. Schlüter, Phys. Rev. 82(6), 863 (1951).
  15. Е.А. Михайлов, Р.Р. Андреасян, Астрон. журн. 98, 795 (2021).
  16. E.A. Mikhailov and R.R. Andreasyan, Open Astronomy 30(1), 127 (2021).
  17. R.R. Andreasyan, I.K. Marchevsky, V.E. Martynova, and E.A. Mikhailov, Comm. Byurakan Astrophys. Observ. 69, 274 (2022).
  18. E. Kravchenko, M. Giroletti, K. Hada, D.L. Meier, M. Nakamura, J. Park, and R.C. Walker, Astron. and Astrophys. 637, id. L6 (2020).
  19. R.D. Blandford and R.L. Znajek, Monthly Not. Roy. Astron. Soc. 179, 433 (1977).
  20. I.W. Roxburgh, Monthly Not. Roy. Astron. Soc. 132, 201 (1966).
  21. R.E. Pudritz and J. Silk, 342, 650 (1989).
  22. R.M. Kulsrud, R. Cen, J.P. Ostriker, and D. Ryu, 480, 481 (1997).
  23. N.Y. Gnedin, A. Ferrara, and E.G. Zweibel, 539, 505 (2000).
  24. H. Lesch, A. Crusius, R. Schlickeiser, and R. Wielebinsky, Astron. and Astrophys. 217, 99 (1989).
  25. T. Arshakian, R. Beck, M. Krause, and D. Sokoloff, Astron. and Astrophys. 494, 21 (2009).
  26. A. King, Monthly Not. Roy. Astron. Soc. Letters 456(1), L109 (2016).
  27. В. Ф. Сулейманов, Г. В. Липунова, Н. И. Шакура, Астрон. журн. 84, 612 (2007).
  28. И.Е. Тамм, Основы теории электричества (М.: Физматлит, 2003.)
  29. Г. Альвен, К.-Г. Фельтхаммар, Космическая электродинамика (М.: Мир, 1967).
  30. Р.Р. Андреасян, Астрофизика 39(1), 111 (1996).
  31. К.С. Кузьмина, И.К. Марчевский, Прикладная математика и механика 83(3), 495 (2019).
  32. И.К. Марчевский, К.С. Сокол, Ю.А. Измайлова, Вестник МГТУ. Сер. Естественные науки 6, 33 (2022).
  33. И.К. Лифанов, Метод сингулярных интегральных уравнений и численный эксперимент (М.: ТОО Янус, 1995).
  34. Е.П. Велихов, ЖЭТФ 36, 1399 (1959).
  35. A. Brandenburg and K.J. Donner, Monthly Not. Roy. Astron. Soc. 288, L29 (1997).
  36. N. Shakura, K. Postnov, D. Kolesnikov, and G. Lipunova, Physics Uspekhi 66(12), 1262 (2023), arXiv:2210.15337 [astro-ph.HE].

Copyright (c) 2024 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies