Orbital Period Variations of the Eclipsing Binaries RW Cap, BG Peg, and CU Peg

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The variations in the orbital period of the eclipsing binaries RW Cap, BG Peg, and CU Peg have been analyzed. The variations in the period of RW Cap and BG Peg can be well represented by cyclic variations with large amplitude. It has been shown, that these variations cannot be explained by the presence of a third body. They can be a consequence of the magnetic activity of the secondary components having a convective zone. The variations in the period of CU Peg can be represented by a superposition of a secular period increase due to exchange of matter between the components and cyclic variations. These cyclic variations can occur due to the presence of a third body in the system or they can be a consequence of the magnetic activity of the secondary component.

Full Text

Restricted Access

About the authors

A. I. Khaliullina

Sternberg Astronomical Institute, Moscow State University

Author for correspondence.
Email: hfh@sai.msu.ru
Russian Federation, Moscow

References

  1. D. S. Hall, Space Sci. Rev. 50, 219 (1989).
  2. J. J. Matese and D. P. Whitmire, Astron. Aph. 117, L7–L9 (1983).
  3. J. H. Applegate, Astrophys. J. 385, 621 (1992).
  4. A. F. Lanza, M. Rodono, and R. Rosner, Monthly Not. Roy. Astron. Soc. 296, 893 (1998).
  5. A. F. Lanza and M. Rodono, Astron. and Astrophys. 349, 887 (1999).
  6. E. C. Pickering, Astron. Nachr. 184, 5 (1910).
  7. A. B. Wyse, Lick Bull. № 464 (1934).
  8. А. В. Соловьев, Переменные звезды 10, 410 (1956).
  9. M. A. Svechnikov and Eh. F. Kuznetsova, Vizier On-line Data Catalog: Approximate elements of eclipsing binaries (1990).
  10. В. П. Цесевич, Астрон. цирк. № 15, 6 (1943).
  11. В. П. Цесевич, Переменные звезды 11, 403 (1957).
  12. J. M. Kreiner, Acta Astron. 21, 365 (1971).
  13. A. Erdem, F. Soydugan, S. S. Doğru, B. Özkardeş, D. Doğru, M. Tüysüz, O. Demircan, New Astron. 12, 613 (2007).
  14. P. Zashe, Multiple stellar systems under photometric and astrometric analysis, Doctoral Thesis, p. 23–24 (2008).
  15. B. R. N. O. Project — Eclipsing Binaries database, http://vaR₂.astro.cz/EN/brno/index.php.
  16. S. Qian, Astrophys. J. 119, 3064 (2000).
  17. S. Qian, Astrophys. J. 122, 2686 (2001).
  18. S. Qian, Publs Astron. Soc. Pacif. 114, 650 (2002).
  19. Д. Я. Мартынов, в кн. М. С. Зверев, Б. В. Кукаркин, Д. Я. Мартынов, П. П. Паренаго, Н. Ф. Флоря, В. П. Цесевич. Переменные звезды (Гостехиздат, т. 3, стр. 464–490, 1947).
  20. А. И. Халиуллина и Х. Ф. Халиуллин, Астрон. журн. 61, 393 (1984).
  21. Z. Eker, F. Soudugan, E. Soydugan, S. Bilir, E. Yaz Gökçe, I. Steer, M. Tüysüz, T. Şenyüz, and O. Demircan, Astron. J. 149, 131 (2015).
  22. S. Blazko, Переменные звезды 3, 96 (1931).
  23. W. Götz and W. Wenzel, Mitt. Veränder. Sterne 1, №505 (1960).
  24. E. Soydugan, F. Soydugan, T. Şenyüz, Ç. Püsküllü, O. Demircan, New Astron. 16, 72 (2011).
  25. T. Senyüz and E. Soydugan, Proceeding IAU Symp. №301, 483 (2013).
  26. A. N. Cox, ed., Allen’s Astrophysical Quantities, fourth edition (New York, Berlin, Heideberg: Springer, 2000).
  27. N. Shapley, and E. M. Hughes, Annals of Harvard College Obs. 90, 163 (1940).
  28. R. Szafraniec, Acta Astron. 26, 25 (1976).
  29. S. Qian, Astrophys. Space Sci. 282, 399 (2002).
  30. E. Panko, P. Flin, and A. Pikhun, Astrophys. Space Sci. 305, 385 (2006).
  31. Б. В. Кукаркин, Переменные звезды 5, 193 (1938).
  32. R. Szafraniec, Acta Astron. ser. c 5, 10 (1952).
  33. R. Szafraniec, Acta Astron. ser. c 5, 51 (1953).
  34. R. Szafraniec, Acta Astron. ser. c 5, 189 (1955a).
  35. R. Szafraniec, Acta Astron. ser. c 5, 193 (1955b).
  36. R. Szafraniec, Acta Astron. 6, 141 (1956).
  37. R. Szafraniec, Acta Astron. 7, 188 (1957).
  38. R. Szafraniec, Acta Astron. 9, 48 (1959).
  39. K. Kordylewski, Inform. Bull. Var. Stars, №35 (1963).
  40. K. Locher, BBSAG Bull. 44 (1979a).
  41. K. Locher, BBSAG Bull. 45 (1979b).
  42. K. Locher, BBSAG Bull. 61 (1982).
  43. A. Paschke, BBSAG Bull. 10⁵ (1994).
  44. J. Safar and M. Zejda, Inform. Bull. Var. Stars, №4887 (2000).
  45. L. Brat, M. Zejda and P. Svoboda, Open Europ. J. on Var. Stars 74, 1 (2007).
  46. P. Guilbaut, BBSAG Bull. 124 (2001).
  47. J. Hubscher, H-M. Steinbach, and F. Walter, Inform. Bull. Var. Stars, №5830 (2008).
  48. J. Hubscher, P. B. Lehmann, G. Monninger, H.-M. Steinbach, and F. Walter, Inform. Bull. Var. Stars, № 5941 (2010).
  49. R. Diethelm, Inform. Bull. Var. Stars, №6011 (2012).
  50. J. Hubscher, Inform. Bull. Var. Stars, №6196 (2017).
  51. Х. Ф. Халиуллин, Астрон. журн. 51, 395 (1974).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Deviations (O —C)1 of the observed (O) moments of minima of RW Cap from the calculated (C) ones with linear elements (1). Photographic observations are presented as triangles, visual ones as small dots, photoelectric and CCD ones as large dots.

Download (103KB)
3. Fig. 2. Deviations (O—C)2 of the observed moments of minima RW Cap from those calculated with linear elements from representation (2). The solid line is the theoretical curve for the light-time equation with parameters from Table 1. The lower part of the figure shows the residuals after subtracting the theoretical ones calculated by formula (2) from the observed moments of minima. The notations are the same as in Fig. 1.

Download (115KB)
4. Fig. 3. Deviations (O – C)₁ of observed (O) moments of minima of BG Peg from calculated (C) ones with linear elements (4). The designations are the same as in Fig. 1.

Download (87KB)
5. Fig. 4. Deviations (O – C)₂ of the observed (O) moments of minima of BG Peg from the calculated (C) ones with linear elements from the representation (5). The solid line is the theoretical curve for the light-time equation with the parameters from Table 3. The lower part of the figure shows the residuals after subtracting the theoretical ones calculated by formula (5) from the observed ones. The notations are the same as in Fig. 1.

Download (131KB)
6. Fig. 5. Deviations (O – C)₁ of the observed moments of minima CU Peg from those calculated with linear elements (8). The graph is constructed using all moments of minima from Table 5. The notations are the same as in Fig. 1.

Download (81KB)
7. Fig. 6. Deviations (O – C)₂ of the observed moments of minima of CU Peg from those calculated with linear elements from representation (10). The solid curve is the sum of the theoretical curves for the parabola and the light-time equation with the parameters from Table 6. The lower part of the figure shows the values ​​of (O – C)₃ obtained by subtracting the parabola and the light-time equation from (O – C)₂. The notations are the same as in Fig. 1.

Download (114KB)
8. Fig. 7. Deviations (O – C)₄ of the observed moments of minima of CU Peg from those calculated with quadratic elements (10). The solid line is the theoretical curve for the light-time equation with the parameters from Table 6. The notations are the same as in Fig. 1.

Download (111KB)

Copyright (c) 2024 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies