SIMULATIONS OF LINEAR POLARIZATION OF PRECESSING AGN JETS AT PARSEC SCALES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The latest results of the most detailed analysis of multi-epoch polarization-sensitive observations of active galactic nuclei (AGN) jets at parsecs scales by very long baseline interferometry (VLBI) reveal several characteristic patterns of linear polarization distribution and its variability [1, 2]. Some of the observed profiles can be reproduced by a simple model of a jet threaded by a helical magnetic field. However, none of the models presented to date can explain the observed polarization profiles with an increase in its degree towards the edges of the jet, and accompanied by a “fountain” type electrical vector pattern and its high temporal variability in the center. Based on simulations of the VLBI observations of relativistic jets, we show here that the observed transverse linear polarization profiles, atypical for the simple magnetic field models can be naturally produced assuming the finite resolution of VLBI arrays and precession of a jet on ten-years scales, observational indications of which are found in an increasing number of AGN. In our simulations, we qualitatively reproduce the distribution of the electric vector and its variability, though the polarization images are characterized by a bright spine due to weak smearing, which is poorly consistent with observations. More effective depolarization can be obtained in models with the suppressed emission of the jet spine.

About the authors

R. V. Todorov

Moscow Institute of Physics and Technology

Author for correspondence.
Email: todorov.rv@phystech.edu
Russia, Moscow region, Dolgoprudny

E. V. Kravchenko

Moscow Institute of Physics and Technology; Astro Space Centre of Lebedev Physical Institute

Email: todorov.rv@phystech.edu
Russia, Moscow region, Dolgoprudny; Russia, Moscow

I. N. Pashchenko

Astro Space Centre of Lebedev Physical Institute

Email: todorov.rv@phystech.edu
Russia, Moscow

A. B. Pushkarev

Astro Space Centre of Lebedev Physical Institute; Crimean Astrophysical Observatory

Email: todorov.rv@phystech.edu
Russia, Moscow; Russia, Crimea, Nauchny

References

  1. A. B. Pushkarev, H. D. Aller, M. F. Aller, D. C. Homan, et al., Monthly Not. Roy. Astron. Soc. 520 (4), 6053 (2023), arXiv:2209.04842 [astro-ph.HE].
  2. D. I. Zobnina, H. D. Aller, M. F. Aller, D. C. Homan, et al., Monthly Not. Roy. Astron. Soc. 523 (3), 3615 (2023), arXiv:2211.15624 [astro-ph.HE].
  3. R. Blandford, D. Meier, and A. Readhead, Ann. Rev. Astron. Astrophys. 57, 467 (2019), arXiv 1812.06025 [astro-ph.HE].
  4. M. L. Lister and D. C. Homan, Astron. J. 130 (4), 1389 (2005).
  5. A. B. Pushkarev, Y. Y. Kovalev, M. L. Lister, T. Savolainen, M. F. Aller, H. D. Aller, and M. A. Hodge, Galaxies 5 (4), 93 (2017).
  6. A. G. Pacholczyk and T. L. Swihart, Astrophys. J. 150, 647 (1967).
  7. E. V. Kravchenko, Y. Y. Kovalev, and K. V. Sokolovsky, Monthly Not. Roy. Astron. Soc. 467 (1), 83 (2017), arXiv:1701.00271 [astro-ph.HE].
  8. G. Bruni, T. Savolainen, J. L. Gómez, A. P. Lobanov, et al., Adv. Space Research 65 (2), 712 (2020).
  9. D. C. Gabuzda, A. B. Pushkarev, and T. V. Cawthorne, Monthly Not. Roy. Astron. Soc. 319 (4), 1109 (2000), arXiv:astro-ph/0307192.
  10. M. Lyutikov, V. I. Pariev, and D. C. Gabuzda, Monthly Not. Roy. Astron. Soc. 360 (3), 869 (2005), arXiv:astro-ph/0406144.
  11. J. L. Gómez, A. P. Lobanov, G. Bruni, Y. Y. Kovalev, et al., Astrophys. J. 817(2), id. 96 (2016), arXiv:1512.04690 [astro-ph.HE].
  12. E. V. Kravchenko, J. L. Gómez, Y. Y. Kovalev, A. P. Lobanov, et al., Astrophys. J. 893 (1), id. 68 (2020), arXiv:2003.08776 [astro-ph.HE].
  13. F. M. Pötzl, A. P. Lobanov, E. Ros, J. L. Gómez, et al., Astron. and Astrophys. 648, id. A82 (2021), arXiv:2102.04441 [astro-ph.HE].
  14. S. P. O’Sullivan and D. C. Gabuzda, Monthly Not. Roy. Astron. Soc. 393 (2), 429 (2009), arXiv:0811.4426 [astro-ph].
  15. T. Hovatta, M. L. Lister, M. F. Aller, H. D. Aller, D. C. Homan, Y. Y.Kovalev, A. B. Pushkarev, and T. Sa-volainen, Astron. J. 144 (4), 105 (2012), arXiv:1205.6746 [astro-ph.CO].
  16. D. C. Gabuzda, S. Knuettel, and A. Bonafede, Astron. and Astrophys. 583, id. A96 (2015), arXiv:1511.08730 [astro-ph.GA].
  17. A. Pasetto, C. Carrasco-González, J. L. Gómez, J.‑M. Martí, et al., Astrophys. J. Letters 923 (1), id. L5 (2021), arXiv:2112.06971 [astro-ph.GA].
  18. R. T. Zavala and G. B. Taylor, Astrophys. J. 612, 749 (2004).
  19. J. C. Algaba, Monthly Not. Roy. Astron. Soc. 429(4), 3551 (2013).
  20. K. Asada, M. Inoue, Y. Uchida, S. Kameno, K. Fujisawa, S. Iguchi, and M. Mutoh, Publ. Astron. Soc. Japan 54, L39 (2002), arXiv:astro-ph/0205497.
  21. M. Zamaninasab, T. Savolainen, E. Clausen-Brown, T. Hovatta,M. L. Lister, T. P. Krichbaum, Y. Y. Kovalev, and A. B. Pushkarev, Monthly Not. Roy. Astron. Soc. 436, 3341 (2013).
  22. D. C. Gabuzda, S. Knuettel, and B. Reardon, Monthly Not. Roy. Astron. Soc. 450 (3), 2441 (2015), arXiv:1503.03411 [astro-ph.GA].
  23. M. M. Lisakov, E. V. Kravchenko, A. B. Pushkarev, Y. Y. Kovalev, T. K. Savolainen, and M. L. Lister, Astrophys. J. 910(1), id. 35 (2021), arXiv:2102.04563 [astro-ph.HE].
  24. J. M. Attridge, D. H. Roberts, and J. F. C. Wardle, Astrophys. J. Letters 518, L87 (1999).
  25. A. B. Pushkarev, D. C. Gabuzda, Y. N. Vetukhnovskaya, and V. E. Yakimov, Monthly Not. Roy. Astron. Soc. 356 (3), 859 (2005).
  26. T. Savolainen, K. Wiik, E. Valtaoja, M. Kadler, E. Ros, M. Tornikoski, M. F. Aller, and H. D. Aller, Astrophys. J. 647 (1), 172 (2006), arXiv:astro-ph/0605134.
  27. M. L. Lister, M. F. Aller, H. D. Aller, D. C. Homan, et al., Astron. J. 146 (5), 120 (2013), arXiv:1308.2713 [astro-ph.CO].
  28. A. B. Pushkarev, Y. Y. Kovalev, M. L. Lister, and T. Sa-volainen, Monthly Not. Roy. Astron. Soc. 468 (4), 4992 (2017), arXiv:1705.02888 [astro-ph.HE].
  29. Y. Y. Kovalev, A. B. Pushkarev, E. E. Nokhrina, A. V. Pla-vin,V. S. Beskin, A. V. Chernoglazov, M. L. Lister, and T. Savolainen, Monthly Not. Roy. Astron. Soc. 495 (4), 3576 (2020), arXiv:1907.01485 [astro-ph.GA] .
  30. M. L. Lister, M. F. Aller, H. D. Aller, M. A. Hodge, D. C. Homan, Y. Y. Kovalev, A. B. Pushkarev, and T. Sa-volainen, Astrophys. J. Suppl. 234 (1), id. 12 (2018), arXiv:1711.07802 [astro-ph.GA].
  31. D. C. Gabuzda, A. R. Reichstein, and E. L. O’Neill, Monthly Not. Roy. Astron. Soc. 444 (1), 172 (2014), arXiv:1410.6653 [astro-ph.GA].
  32. E. Clausen-Brown, M. Lyutikov, and P. Kharb, Monthly Not. Roy. Astron. Soc. 415 (3), 2081 (2011), arXiv:1101.5149 [astro-ph.HE].
  33. D. C. Gabuzda, Galaxies 9 (3), 58 (2021).
  34. N. L. Zakamska, M. C. Begelman, and R. D. Blandford, Astrophys. J. 679 (2), 990 (2008), arXiv:0801.1120[astro-ph].
  35. E. Murphy, T. V. Cawthorne, and D. C. Gabuzda, Monthly Not. Roy. Astron. Soc. 430 (3), 1504 (2013), arXiv:1302.0186 [astro-ph.HE].
  36. M. S. Butuzova, Astron. Rep. 62 (2), 116 (2018).
  37. M. S. Butuzova and A. B. Pushkarev, Monthly Not. Roy. Astron. Soc. 520 (4), 6335 (2023), arXiv:2209.15359 [astro-ph.HE].
  38. M. Butuzova and A. Pushkarev, in European VLBI Network Mini-Symposium and Users’ Meeting 2021, 12–14 July, 2021, https://pos.sissa.it/cgi-bin/reader/conf.cgi?confid99, id. 5 (2022).
  39. R. A. Laing, Astrophys. J. 248, 87 (1981).
  40. M. L. Lister, D. C. Homan, T. Hovatta, K. I. Kellermann, et al., Astrophys. J. 874 (1), id. 43 (2019), arXiv:1902.09591 [astro-ph.GA].
  41. M. L. Lister, D. C. Homan, K. I. Kellermann, Y. Y. Kovalev, A. B. Pushkarev, E. Ros, and T. Savolainen, Astrophys. J. 923 (1), id. 30 (2021), arXiv:2108.13358 [astro-ph.HE].
  42. R. D. Blandford and A. Königl, Astrophys. J. 232, 34 (1979).
  43. A. Königl, Astrophys. J. 243, 700 (1981).
  44. T. Hovatta, M. F. Aller, H. D. Aller, E. Clausen-Brown, et al., Astron. J. 147(6), id. 143 (2014), arXiv:1404.0014 [astro-ph.GA].
  45. T. Beckert and H. Falcke, Astron. and Astrophys. 388, 1106 (2002), arXiv:astro-ph/0112398.
  46. J. Gracia, N. Vlahakis, I. Agudo, K. Tsinganos, and S. V. Bogovalov, Astrophys. J. 695(1), 503 (2009), arXiv:0901.2634 [astro-ph.GA].
  47. D. S. Briggs, High fidelity deconvolution of moderately resolved sources, PhD thesis, The New Mexico Institue of Mining and Technology, Socorro, New Mexico (1995).
  48. J. A. Högbom, Astron. and Astrophys. Suppl. Ser. 15, 417 (1974).
  49. B. G. Clark, Astron. and Astrophys. 89(3), 377 (1980).
  50. M. C. Shepherd, in Astronomical Data Analysis Software and Systems VI, edited by G. Hunt and H. E. Payne (San Francisco: ASP), ASP Conf. Ser. 125, 77 (1997).
  51. J.-L. Gómez, A. P. Marscher, A. Alberdi, S. G. Jorstad, and I. Agudo, Astrophys. J. Letters 561 (2), L161 (2001), arXiv:astro-ph/0110133.
  52. V. A. Frolova, E. E. Nokhrina, and I. N. Pashchenko, Monthly Not. Roy. Astron. Soc. 523 (1), 887 (2023), arXiv:2305.02929 [astro-ph.HE].
  53. V. S. Beskin, T. I. Khalilov, and V. I. Pariev, Astron. Letters 49 (3), 119 (2023).
  54. M. C. Begelman, R. D. Blandford, and M. J. Rees, Nature 287 (5780), 307 (1980).
  55. J. Lense and H. Thirring, Physikalische Zeitschrift 19, 156 (1918).
  56. H. Thirring, Physikalische Zeitschrift 19, 33 (1918).
  57. A. Caproni, H. J. Mosquera Cuesta, and Z. Abraham, Astrophys. J. 616 (2), L99 (2004), arXiv:astro-ph/0410450.
  58. Y. Cui, H. Kazuhiro, K. Tomohisa, K. Motoki, et al., Nature 621 (7980), 711 (2023).
  59. A. Caproni and Z. Abraham, Monthly Not. Roy. Astron. Soc. 349 (4), 1218 (2004), arXiv:astro-ph/0312407.
  60. S. D. von Fellenberg, M. Janssen, J. Davelaar, M. Zajacek, S. Britzen, H. Falcke, E. Körding, and E. Ros, arXiv:2303.00603 [astro-ph.HE] (2023).
  61. S. Britzen, C. Fendt, G. Witzel, S.-J. Qian, et al., Monthly Not. Roy. Astron. Soc. 478(3), 3199 (2018).
  62. Z. Abraham and G. E. Romero, Astron. and Astrophys. 344, 61 (1999).
  63. Z. Abraham and E. A. Carrara, Astrophys. J. 496(1), 172 (1998).
  64. R. Lico, J. Liu, M. Giroletti, M. Orienti, et al., Astron. and Astrophys. 634, id. A87 (2020), arXiv:2001.01753 [astro-ph.HE].
  65. J. C. Algaba, B. Rani, S. S. Lee, M. Kino, J. Park, and J.-Y. Kim, Astrophys. J. 886 (2), id. 85 (2019), arXiv:1910.02661 [astro-ph.GA].
  66. S. O’Neill, S. Kiehlmann, A. C. S. Readhead, M. F. Aller, et al., Astrophys. J. Letters 926 (2), id. L35 (2022), arXiv:2111.02436 [astro-ph.HE].
  67. A. P. Marscher, S. G. Jorstad, V. M. Larionov, M. F. Aller, et al., Astrophys. J. Letters 710 (2), L126 (2010), arXiv:1001.2574 [astro-ph.CO].
  68. A. P. Marscher, S. G. Jorstad, F. D. D’Arcangelo, P. S. Smith, et al., Nature 452 (7190), 966 (2008).
  69. M. Roca-Sogorb, J. L. Gómez, I. Agudo, A. P. Marscher, and S. G. Jorstad, Astrophys. J. Letters 712 (2), L160 (2010), arXiv:0912.2192 [astro-ph.CO].
  70. P. E. Hardee, Astrophys. J. 664(1), 26 (2007), arXiv:0704.1621 [astro-ph].
  71. A. S. Nikonov, Y. Y. Kovalev, E. V. Kravchenko, I. N. Pa-shchenko, and A. P. Lobanov, arXiv:2307.11660 [astro-ph.GA] (2023).
  72. M. Perucho, Y. Y. Kovalev, A. P. Lobanov, P. E. Hardee, and I. Agudo, Astrophys. J. 749 (1), id. 55 (2012), arXiv:1202.1182 [astro-ph.CO].
  73. A. P. Lobanov and J. A. Zensus, Science 294 (5540), 128 (2001).
  74. R. C. Vermeulen and M. H. Cohen, Astrophys. J. 430, 467 (1994).
  75. M. H. Cohen, M. L. Lister, D. C. Homan, M. Kadler, K. I. Kellermann, Y. Y. Kovalev, and R. C. Vermeulen, Astrophys. J. 658 (1), 232 (2007), arXiv:astro-ph/0611642.
  76. S. S. Komissarov, N. Vlahakis, A. Königl, and M. V. Barkov, Monthly Not. Roy. Astron. Soc. 394, 1182 (2009).
  77. V. Beskin, A. Chernoglazov, A. Kiselev, and E. Nokhrina, Monthly Not. Roy. Astron. Soc. 472 (4), 3971 (2017).
  78. K. Chatterjee, M. Liska, A. Tchekhovskoy, and S. B. Mar-koff, Monthly Not. Roy. Astron. Soc. 490(2), 2200 (2019), arXiv:1904.03243 [astro-ph.HE].
  79. R. A. Laing, Monthly Not. Roy. Astron. Soc. 193, 439 (1980).
  80. P. A. Hughes, H. D. Aller, and M. F. Aller, Astrophys. J. 298, 301 (1985).
  81. E. V. Kravchenko, Y. Y. Kovalev, T. Hovatta, and V. Ramakrishnan, Monthly Not. Roy. Astron. Soc. 462 (3), 2747 (2016), arXiv:1607.05852 [astro-ph.HE].
  82. M. M. Lisakov, Y. Y. Kovalev, T. Savolainen, T. Hovatta, and A. M. Kutkin, Monthly Not. Roy. Astron. Soc. 468 (4), 4478 (2017), arXiv:1703.07976 [astro-ph.GA].
  83. A. V. Plavin, Y. Y. Kovalev, A. B. Pushkarev, and A. P. Lo-banov, Monthly Not. Roy. Astron. Soc. 485, 1822 (2019).

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (597KB)
3.

Download (884KB)
4.

Download (911KB)
5.

Download (881KB)
6.

Download (444KB)

Copyright (c) 2023 Р.В. Тодоров, Е.В. Кравченко, И.Н. Пащенко, А.Б. Пушкарев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».