STATISTICS OF THERMAL PLASMA PARAMETERS AND NON-THERMAL X-RAY SPECTRA OF SOLAR FLARES WITH HELIOSEISMIC RESPONSE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present the results of statistical analysis of various thermal plasma parameters and non-thermal X-ray spectra of helioseismically active (producing “sunquakes”) solar flares of the 24th solar cycle up to February 2014. Two samples of flares are compared: with helioseismic activity in the form of sunquakes and a sample of flares without photospheric disturbances. The dependences of the considered flare parameters on the energy of helioseismic disturbances are also investigated. Quantitative parameters of solar flares are taken from the statistical work of the Global Energetics series by Markus Ashwanden in 2014–2019. We consider thermodynamic plasma parameters derived from the analysis of RHESSI X-ray spectra and differential emission measure (from AIA EUV images), as well as the characterization of non-thermal X-ray spectra from RHE-SSI. Statistical analysis confirmed that helioseismically active solar flares are characterized by significantly larger fluxes of non-thermal X-ray emission compared to flares without photospheric perturbations. A good linear relationship between helioseismic energy and the total flux of non-thermal X-ray radiation and the total energy of accelerated electrons is found. It is shown that the power-law index of the nonthermal X‑ray spectrum is not the parameter by which one can separate the two groups of flares under consideration. The analysis of the X-ray thermal spectra shows a slight difference between the flares with the sunsets.

About the authors

I. N. Sharykin

Space Research Institute of Russian Academy of Sciences

Author for correspondence.
Email: ivan.sharykin@phystech.edu
Russia, 117997, Moscow

I. V. Zimovets

Space Research Institute of Russian Academy of Sciences

Email: ivan.sharykin@phystech.edu
Russia, 117997, Moscow

A. G. Kosovichev

New Jersey Institute of Technology

Email: ivan.sharykin@phystech.edu
USA, Newark

References

  1. C. L. Wolff, Atrophys. J. 176, 833 (1972).
  2. A. G. Kosovichev and V. V. Zharkova, Helioseismology (Paris: ESA, in ESA Special Publication 376, ed. J. T. Hoeksema et al., 341, 1995).
  3. A. G. Kosovichev and V. V. Zharkova, Nature 393, 317 (1998).
  4. P. H. Scherrer, R. S. Bogart, R. I. Bush, et al., Solar Phys. 162, 129 (1995).
  5. V. Domingo, B. Fleck, and A. I. Poland, Solar Phys., 162, Is. 1–2, 1–37 (1995).
  6. C. Lindsey and D. C. Braun, Atrophys. J. 485, 895 (1997).
  7. A.-C. Donea, D. C. Braun, and C. Lindsey, Astrophys. J. Lett. 513, L143 (1999).
  8. C. Lindsey and D. C. Braun, Solar Phys. 192, 261 (2000).
  9. J. C. Buitrago-Casas, J. C. Martínez Oliveros, C. Lindsey, et al., Solar Phys. 290, 3151 (2015).
  10. A. Donea, Space Sci. Rev. 158, 451 (2011).
  11. A. G. Kosovichev, Extraterrestrial Seismology (Cambridge: Cambridge Univ. Press, ed. V. Tong & R. García, 306, 2015).
  12. A. G. Kosovichev, Solar Phys. 238, 1 (2006).
  13. A. G. Kosovichev and T. Sekii, Astrophys. J. Lett. 670, L147 (2007).
  14. I. N. Sharykin, A. G. Kosovichev, V. M. Sadykov, I. V. Zimovets, and I. I. Myshyakov, Astrophys. J. 843, 67 (2017).
  15. J. T. Stefan and A. G. Kosovichev, Astrophys. J. 895, 65, 15 (2020).
  16. V. M. Sadykov, J. T. Stefan, and A. G. Kosovichev, eprint arXiv:2306.13162 (2023).
  17. S. Zharkov, L. M. Green, S. A. Matthews, and V. V. Zharkova, Astrophys. J. Lett. 741, L35 (2011).
  18. S. Zharkov, L. M. Green, S. A. Matthews, and V. V. Zharkova, Solar Phys. 284, 315 (2013).
  19. H. S. Hudson, G. H. Fisher, and B. T. Welsch, Subsurface and Atmospheric Influences on Solar Activity (San Francisco, CA: ASP, ASP Conf. Ser. 383, ed. R. Howeet al., 221, 2008).
  20. G. H. Fisher, D. J. Bercik, B. T. Welsch, and H. S. Hudson, Solar Phys. 277, 59 (2012).
  21. J. D. Alvarado-Gómez, J. C. Buitrago-Casas, J. C. Mar-tínez-Oliveros, et al., Solar Phys. 280, 335 (2012).
  22. O. Burtseva, J. C. Martínez-Oliveros, G. J. D. Petrie, and A. A. Pevtsov, Astrophys. J. 806, 173 (2015).
  23. A. J. B. Russell, M. K. Mooney, J. E. Leake, and H. S. Hudson, Astrophys. J. 831, 42 (2016).
  24. I. N. Sharykin, A. G. Kosovichev, and I. V. Zimovets, A-strophys. J. 807, 102 (2015).
  25. I. N. Sharykin and A. G. Kosovichev, Astrophys. J. 808, 72 (2015).
  26. D. Besliu-Ionescu, A. Donea, and P. Cally, Sun and Geosphere 12, 59 (2017).
  27. R. P. Lin, B. R. Dennis, G. J. Hurford, et al., Solar Phys. 210, 3 (2002).
  28. R. Chen and J. Zhao, Astrophys. J. 908, 182, 14 (2021).
  29. I. N. Sharykin and A. G. Kosovichev, Atrophys. J. 895, 76, 14 (2020).
  30. P. H. Scherrer, J. Schou, and R. I. Bush, Solar Phys. 275, Is. 1–2, 207–227 (2012).
  31. W. D. Pesnell, B. J. Thompson, and P. C. Chamberlin, Solar Phys. 275, 3–15 (2012).
  32. W. M. Neupert, Astrophys. J. Lett. 153, L59 (1968).
  33. B. R. Dennis and D. M. Zarro, Solar Phys. 146, 177 (1993).
  34. J. C. Brown, Solar Phys. 18, Is. 3, 489–502 (1971).
  35. M. A. Livshits, O. G. Badalian, A. G. Kosovichev, and M. M. Katsova, Solar Phys. 73, 269 (1981).
  36. G. H. Fisher, R. C. Canfield, and A. N. McClymont, A-strophys. J. 289, 414 (1985).
  37. A. G. Kosovichev, Bulletin of the Crimean Astrophysical Observatory 75, 6 (1986).
  38. J. C. Allred, A. F. Kowalski, and M. Carlsson, Astrophys. J. 809, 104 (2015).
  39. H. Wu, Y. Dai, and M. D. Ding, Astrophys. J. Lett. 943, 1, L6, 7 (2023).
  40. J. R. Lemen, A. M. Title, D. J. Akin, et al., Solar Phys. 275, Is. 1–2, 17–40 (2012).
  41. M. J. Aschwanden, E. P. Kontar, and N. L. S. Jeffrey, Atrophys. J. 881, 1, 22 (2019).
  42. M. J. Aschwanden, P. Boerner, D. Ryan, et al., Atrophys. J. 802, 53, 20 (2015).
  43. M. J. Aschwanden, G. Holman, A. O’Flannagain, et al., Astrophys. J. 832, 1, 27, 20 (2016).
  44. E. P. Kontar, N. L. S. Jeffrey, A. G. Emslie, and N. H. Bian, Astrophys. J. 809, 1, 35, 11 (2015).
  45. M. J. Aschwanden, P. Boerner, A. Caspi, et al., Solar Phys. 290, 10, 2733–2763 (2015).
  46. R. L. Aptekar, D. D. Frederics, and S. V. Golenetskii, Space Science Reviews 71, Is. 1–4, 265–272 (1995).
  47. D. F. Ryan, A. M. O’Flannagain, M. J. Aschwanden, and P. T. Gallagher, Solar Phys. 289, 2547 (2014).
  48. G. J. D. Petrie, Astrophys. J. 759, 50, 18 (2012).
  49. S. Wang, C. Liu, R. Liu, N. Deng, Y. Liu, and H. Wang, Astrophys. J. Lett. 745, L17, 5 (2012).
  50. I. N. Sharykin, I. V. Zimovets, and A. V. Radivon, Cosmic Research 61, 4, 265–282 (2023).
  51. A. N. Shabalin, Yu. E. Charikov, and I. N. Sharykin, A-strophys. J. 931, 1, 27, 13 (2022).
  52. V. V. Zharkova and M. Gordovskyy, Astrophys. J. 651, 1, 553–565 (2006).
  53. Yu. E. Charikov and A. N. Shabalin, Technical Physics 66, 1092–1099 (2021).
  54. E. P. Ovchinnikova, Yu. E. Charikov, A. N. Shabalin, and G. I. Vasil`ev, Geomagn. Aeron. 58, 7, 1008–1013 (2018).

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (296KB)
3.

Download (161KB)
4.

Download (80KB)
5.

Download (210KB)
6.

Download (267KB)
7.

Download (126KB)
8.

Download (120KB)

Copyright (c) 2023 И.Н. Шарыкин, И.В. Зимовец, А.Г. Косовичев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies