NEXT GENERATION GRAVITY MISSIONS: STUDYING THE POSSIBILITIES OF MULTIPLE CONSTELLATION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study potential possibilities of space constellation consisting of two pairs of spacecraft moving in different orbits, the so-called next generation gravity missions, aimed at increasing the spatial and temporal resolution of measurements and improving the accuracy of the recovery of the Earth’s gravity field. As a result of numerical simulation of the orbital motion of the multiple spacecraft constellation and solving the inverse problem of recovering the Earth’s gravitational field based on model measurements performed in this constellation, a multiple configuration with orbital parameters \(h = 370\) km, \(i = 90.5^\circ \) and \(h = 370\) km, \(i = 70.0^\circ \), was found. Such a multiple constellation makes possible to increase both the spatial and temporal resolution of the Earth’s gravity field models with a significant refinement of zonal, sectorial and tesseral harmonics compared to the one-pair near-polar configuration.

About the authors

A. I. Filetkin

Sternberg Astronomical Institute, Lomonosov Moscow State University; Faculty of Physics, Lomonosov Moscow State University

Author for correspondence.
Email: ai.filetkin@physics.msu.ru
Russia, Moscow; Russia, Moscow

A. S. Zhamkov

Sternberg Astronomical Institute, Lomonosov Moscow State University

Author for correspondence.
Email: zhamkov@physics.msu.ru
Russia, Moscow

S. V. Ayukov

Sternberg Astronomical Institute, Lomonosov Moscow State University

Author for correspondence.
Email: s.ayukov@gmail.com
Russia, Moscow

V. K. Milyukov

Sternberg Astronomical Institute, Lomonosov Moscow State University

Author for correspondence.
Email: vmilyukov@yandex.ru
Russia, Moscow

References

  1. B. D. Tapley, S. Bettadpur, M. M. Watkins, and Ch. Reigber, Geophys. Res. Letters 31(9), id. L09607 (2004).
  2. R. P. Kornfeld, B. W. Arnold, M. A. Gross, N. T. Dahya, W. M. Klipstein, P. F. Gath, and S. Bettadpur, J. Spacecraft and Rockets 56(3), 931 (2019).
  3. T. Reubelt, N. Sneeuw and M. A. Sharifi, in: Gravity, Geoid and Earth Observation, edited by S. P. Mertikas (Springer, 2010), p. 163.
  4. А. С. Жамков, В. К. Милюков, Физика Земли № 2, 139 (2021).
  5. P. L. Bender, D. Wiese, and R. S. Nerem, in: Proc. of the Third Intern. Symp. on Formation Flying, Missions and Technologies, ESA/ESTEC, Noordwijk, 23–25 April 2008, The Netherlands, 1 (2008).
  6. D. Wiese, W. Folkner, and R. Nerem, J. Geodesy 83, 569 (2009).
  7. D. Wiese, R. Nerem, and S.-C. Han, J. Geophys. Res. Solid Earth 116, 405 (2011).
  8. B. Elsaka, J. Kusche, and K.-H. Ilk, Adv. Space Research 50(11), 1534 (2012).
  9. I. Panet, J. Flury, R. Biancale, T. Gruber, et al., Surveys Geophysics 34, 141 (2012).
  10. S. I. Pour, T. Reubelt, and N. Sneeuw, Adv. Space Research 52(5), 916 (2013).
  11. B. Elsaka, J.-C. Raimondo, Ph. Brieden, T. Reubelt, et al., J. Geodesy 88(1), 31 (2014).
  12. B. Elsaka, Intern. J. Geosciences 5(3), 267 (2014).
  13. Daras and R. Pail, J. Geophys. Res. Solid Earth 122(9), 7343 (2017).
  14. S. Dionisio, A. Anselmi, L. Bonino, S. Cesare, L. Massotti, and P. Silvestrin, in: 15th International Conference on Space Operations 2018 (Amer. Inst. Aeronautics and Astronautics, 2018) p. 2495.
  15. A. F. Purkhauser and R. Pail, Geophys. J. Intern. 217(2), 1314 (2019).
  16. R. Pail, H.-C. Yeh, W. Feng, M. Hauk, et al., Remote Sensing 11(22), 2654 (2019).
  17. R. Pail, J. Bamber, R. Biancale, R. Bingham, et al., J. Geodetic Sci. 9(1), 48 (2019).
  18. M. Hauk and R. Pail, Remote Sensing 11(5), 537 (2019).
  19. R. Haagmans, C. Siemes, L. Massotti, O. Carraz, and P. Silvestrin, Rendiconti Lincei Sci. Fisiche Naturali 31(1), 15 (2020).
  20. L. Massotti, C. Siemes, G. March, R. Haagmans, and P. Silvestrin, Remote Sensing 13(19), 3935 (2021).
  21. L. Massotti, J. Gonzalez del Amo, P. Silvestrin, D. Krejci, et al., CEAS Space J. 14, 109 (2022).
  22. P. L. Bender, Remote Sensing 14(4), 948 (2022).
  23. В. К. Милюков, А. И. Филеткин, А. С. Жамков, Астрон. журн. 98(4), 342 (2021).
  24. В. К. Милюков, А. И. Филеткин, А. С. Жамков, ЖЭТФ 161(4), 596 (2022).
  25. G. Petit and B. Luzum, in: IERS Conventions. IERS Technical Note No. 36 (Frankfurt am Main, Verlag des Bundesamts fur Kartographie und Geodasie, 2010), p. 179.
  26. М. В. Беликов, К. А. Тайбаторов, Кинематика и физика небесн. тел 6(2), 24 (1990).
  27. O. Montenbruck and E. Gill, Satellite Orbits. Models, Methods, and Applications (NY: Springer–Verlag Berlin Heidelberg, 2000).
  28. B. Elsaka, Simulated Satellite Formation Flights for Detecting the Temporal Variations of the Earth’s Gravity Field, Inaugural-Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur, Bonn, 168 p. (2010).

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (2MB)
4.

Download (1MB)
5.

Download (1MB)
6.

Download (2MB)
7.

Download (416KB)
8.

Download (400KB)
9.

Download (394KB)
10.

Download (350KB)
11.

Download (359KB)

Copyright (c) 2023 А.И. Филеткин, А.С. Жамков, С.В. Аюков, В.К. Милюков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies