The Structure of the Universe in the Quasar Absorption Spectra

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An analysis of the absorption lines observed in the spectra of quasars makes it possible to study the evolution of the structure of the Universe up to redshifts z∼5. The observed clustering of C IV lines demonstrates the multiple birth of low-mass galaxies in separate structural elements—filaments and “pancakes.” This ensures their subsequent regular hierarchical merger in the central galaxy or group of galaxies. Remnants of the early “pancakes” are observed today as the Local Group, groups around the Andromeda and Centaurus galaxies, and other small groups of galaxies. In turn, the observed clustering of Lyman-alpha lines shows that starless dark matter (DM) halos are also formed in structural elements and their hierarchical clustering leads to the formation of massive starless dark matter halos of moderate density, which also appear in numerical models.

About the authors

M. Demiański

Institute of Theoretical Physics, University of Warsaw; Department of Astronomy, Williams College

Email: astrep@pleiadesonline.com
Poland, Warsaw; USA, Williamstown

A. Doroshkevich

Lebedev Institute of Physics, Russian Academy of Sciences; Kurchatov Institute National Research Centre

Email: astrep@pleiadesonline.com
119991, Moscow, Russia; 123182, Moscow, Russia

T. Larchenkova

Lebedev Institute of Physics, Russian Academy of Sciences

Author for correspondence.
Email: astrep@pleiadesonline.com
119991, Moscow, Russia

References

  1. Ya. Zeldovich, Astron. and Astrophys. 5, 84, (1970).
  2. Я. Зельдович, И. Новиков, Строение и эволюция Вселенной (М.: Наука, 1975).
  3. S. Shandarin and Ya. Zeldovich, Rev. Modern Physics 61(2), 185 (1989).
  4. M. Demiański and A. Doroshkevich, Monthly Not. Roy. Astron. Soc. 306, 779 (1999).
  5. L. Thompson and S. Gregory, Astrophys. J. 220, 809 (1978).
  6. S. Gregory and L. Thompson, Astrophys. J. 222, 784 (1978).
  7. M. Ramella, M. Geller, and J. Huckhra, Astrophys. J. 384, 396 (1992).
  8. S. Ikeuchi, Astrophys. Space Sci. 118, 509 (1986).
  9. L. Gao, S. White, A. Jenkins, C. Frenk, and V. Springel, Monthly Not. Roy. Astron. Soc. 363, 379 (2005).
  10. V. Springel, S. White, A. Jenkins, C. S. Frenk, et al., Nature 435, 629 (2005).
  11. M. Boylan-Kolchin, V. Springel, S. White, and A. Jenkins, Monthly Not. Roy. Astron. Soc. 398, 1150 (2009).
  12. A. Klypin, S. Trujillo-Gomez, and J. Primack, Astrophys. J. 740, id. 102 (2011).
  13. M. Demiański, A. Doroshkevich, S. Pilipenko, and S. Gottlober, Monthly Not. Roy. Astron. Soc. 414, 1813 (2011).
  14. A. Klypin, G. Yepes, S. Gottloeber, F. Prada, and S. Hess, Monthly Not. Roy. Astron. Soc. 457, 4 (2016).
  15. Y. Kim, R. Smith, and J. Shin, Astrophys. J. 935, id. 71 (2022).
  16. M. Walker, M. Mateo, E. Olszewski, J. Peñarrubia, N. W. Evans, and G. Gilmore, Astrophys. J. 704, 1274 (2009).
  17. J. Bullock and M. Boylan-Kolchin, Ann. Rev. Astron. Astrophys. 55(1), 343 (2017).
  18. I. de Martino, S. Chakrebarty, V. Cesare, A. Gallo, L. Ostorero, and A. Diaferio, Universe 6, 107 (2020).
  19. M. Pawlowski, J. Pflamm-Altenburg, and P. Kroupa, Monthly Not. Roy. Astron. Soc. 423, 1109 (2012).
  20. O. Müller, M. Pawlowski, H. Jerjen, and F. Lelli, Science 359, 534 (2018).
  21. A. Helmi, F. van Leeuwen, P. J. McMillan, D. Massari, et al., Astron. and Astrophys. 616, id. A12 (2018).
  22. M. Pawlowski and P. Kroupa, Monthly Not. Roy. Astron. Soc. 491, 3042 (2020).
  23. D. Makarov and I. Karachentsev, Monthly Not. Roy. Astron. Soc. 412, 2498 (2011).
  24. A. Doroshkevich, D. Tucker, S. Allam, and M. Way, Astron. and Astrophys. 418, 7 (2004).
  25. L. Jiang, K. Finlator, S. Cohen, E. Egami, et al., Astrophys. J. 816, id. 16 (2016).
  26. M. Ginolfi, E. Piconcelli, L. Zappacosta, G. C. Jones, et al., Nature Comm. 13, id. 4574 (2022).
  27. Y. Ning, L. Jiang, Z. Zheng, and J. Wu, Astrophys. J. 926, id. 230 (2022).
  28. R. B. Partridge and P. J. E. Peebles, Astrophys. J. 147, 868 (1967).
  29. R. B. Partridge and P. J. E. Peebles, Astrophys. J. 148, 377 (1967).
  30. S. Chandrasekhar, Rev. Modern Physics 15, 1 (1943).
  31. D. Lynden-Bell, Monthly Not. Roy. Astron. Soc. 136, L101 (1967).
  32. J. Fillmore and P. Goldreich, Astrophys. J. 281, 1 (1984).
  33. J. Bardeen, J. Bond, N. Kaiser, and A. Szalay, Astrophys. J. 304, 15 (1986).
  34. A. Gurevich and K. Zybin, Physics Uspekhi 38, 687 (1995).
  35. M. McQuinn, Ann. Rev. Astron. Astrophys. 54, 313 (2016).
  36. А. В. Засов, А. С. Сабурова, А. В. Хоперсков, С. А. Хо-персков, Успехи физ. наук 187, 3 (2017).
  37. T. Naab and J. Ostriker, Ann. Rev. Astron. Astrophys. 55, 59 (2017).
  38. J. Tumlinson, M. Peebles, and J. Werk, Ann. Rev. Astron. Astrophys. 55, 389 (2017).
  39. R. Wechsler and J. Tinker, Ann. Rev. Astron. Astrophys. 56, 435 (2018).
  40. P. Salucci, Astron. and Astrophys. Rev. 27, 2 (2019).
  41. T. Zavala and C. Frenk, Galaxy 7, 81 (2019).
  42. D. Martinez-Delgado, R. Läsker, M. Sharina, E. Toloba, et al., Astron. J. 151, 96 (2016).
  43. J. Roman and I. Trujillo, Monthly Not. Roy. Astron. Soc. 468, 703 (2017).
  44. J. Roman and I. Trujillo, Monthly Not. Roy. Astron. Soc. 468, 4039 (2017).
  45. D. D. Shi, X. Z. Zheng, H. B. Zhao, Z. Z. Pan, et al., Astrophys. J. 846, id. 26 (2017), arXiv:1708.00013 [astro-ph.GA].
  46. M. Demiański, A. Doroshkevich, and T. Larchenkova, Astron. Letters 48(7), 361 (2022).
  47. T.-S. Kim, R. Carswell, and D. Ranquist, Monthly Not. Roy. Astron. Soc. 456, 3509 (2016).
  48. T.-S. Kim, R. Carswell, C. Mongardi, A. Partl, J. Mucket, P. Barai, and S. Cristiani, Monthly Not. Roy. Astron. Soc. 457, 2005 (2016).
  49. M. Demiański and A. Doroshkevich, Astron. Rep. 52, 859 (2018).
  50. B. Wakker, A. Hernfandes, D. French, T.-S. Kim, B. D. Oppenheimer, and B. D. Savage, Astrophys. J. 814(1), id. 40 (2015).
  51. S. E. I. Bosman, G. D. Becker, M. G. Haehnelt, P. C. He-wett, R. G. McMahon, D. J. Mortlock, C. Simpson, and B. P. Venemans, Monthly Not. Roy. Astron. Soc. 470, 1919 (2017).
  52. A. Codoreanu, E. V. Ryan-Weber, L. A. Garcia, N. H. M. Crig-hton, G. Becker, M. Pettini, P. Madau, and B. Venemans, Monthly Not. Roy. Astron. Soc. 481, 4940 (2018).
  53. V. D’Odorico, K. Finlator, S. Cristiani, G. Cupani, et al., Monthly Not. Roy. Astron. Soc. 512(2), 2389 (2022).
  54. A. Boksenberg and W. Sargent, Astrophys. J. Suppl. 218, id. 7 (2015).
  55. M. Demiański, A. Doroshkevich, and V. Turchaninov, Monthly Not. Roy. Astron. Soc. 371, 915 (2006).
  56. E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, et al., Astrophys. J. Suppl. 192, id. 18 (2011).
  57. P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, et al., Astron. and Astrophys. 594, id. 13 (2016).
  58. A. Cuceu, J. Farr, P. Lemos, and A. Font-Ribera, J. Cosmology and Astroparticle Phys. 10, id. 044 (2019).
  59. M. Demiański, A. Doroshkevich, T. Larchenkova, and S. Pilipenko, Astron. Rep. 66, 766 (2022).
  60. A. Doroshkevich, Soviet Astron. 24, 152 (1980).
  61. J. Shull, B. Smith, and C. Danforth, Astrophys. J. 759, id. 23 (2012).
  62. М. Демянский, А. Дорошкевич, Т. Ларченкова, С. Пилипенко, С. Готтлобер, в печати (2023).
  63. Y. Harikane, A. Inoue, K. Mavatan, T. Hashimoto, et al., Astrophys. J. 929(1), id. 1 (2022).
  64. R. Lee, F. Pacucci, P. Natarajan, and A. Loeb, ar-Xiv:2209.06830 [astro-ph.GA] (2022).
  65. M. Viel, J. Lesgourgues, M. Haehnelt, S. Matarrese, and A. Riotto, Phys. Rev. D 71, id. 063534 (2005).
  66. T. Ishiyama, Astrophys. J. 788, id. 27 (2014).
  67. M. Demiański and A. Doroshkevich, Astron. and Astrophys. 422, 423 (2004).
  68. M. Kendalll and P. Moran, Geometrical Probability (London: Griffin, 1963).
  69. А. А. Свешников, Прикладные методы теории случайных функций (М.: Наука, 1968).

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (67KB)

Copyright (c) 2023 М. Демянский, А. Дорошкевич, Т. Ларченкова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies