Large-Scale Convection during Gravitational Collapse with Neutrino Transport in 2D and 3D Models on Fine Grids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of the gravitational collapse of the core of a massive star is considered, taking into account the neutrino transport in the flux-limited diffusion approximation. To reduce the computational domain of a multidimensional problem on a fixed computational grid, the core of a star, which is already at the stage of collapse, is considered. Since the collapse stage is delayed in time compared to the gas-dynamic time scale for an emerging proto-neutron star, we consider the mathematical problem for the initial configuration in equilibrium and neglected the initial radial velocity. Pressure for a long time at the collapse stage is provided by relativistic degenerate electrons, so the relationship between pressure and density in the initial configuration is described by a polytropic equation with the polytropic index n=3. The purpose of this paper is to test the hypothesis that large-scale convection is independent of the 2D and 3D geometry of the mathematical problem and computational grid parameters, as well as the choice of the initial stage of gravitational collapse. The scale of convection is determined by the size of the region of decreasing entropy with neutrino losses, i.e., nonequilibrium neutronization, and the presence of a weak initial rotation.

About the authors

A. G. Aksenov

Institute of Computer Aided Design, Russian Academy of Sciences

Email: aksenov@icad.org.ru
123056, Moscow, Russia

V. M. Chechetkin

Institute of Computer Aided Design, Russian Academy of Sciences; Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Author for correspondence.
Email: aksenov@icad.org.ru
123056, Moscow, Russia; 125047, Moscow, Russia

References

  1. K. Nomoto and M. Hashimoto, Phys. Rep. 163(1–3), 13 (1988), https://www.sciencedirect.com/science/article/abs/pii/0370157388900324.
  2. D. K. Nadezhin, Astrophys. Space Sci. 49, 399 (1977).
  3. V. S. Imshennik and D. K. Nadezhin, Sov. Sci. Rev. Sect. E 8(1), 1 (1989).
  4. W. A. Fowler and F. Hoyle, Astrophys. J. Suppl. 9, 201 (1964).
  5. H. A. Bethe, Rev. Modern Physics 62, 801 (1990).
  6. H.-T. Janka, K. Langanke, A. Marek, G. Martínez-Pinedo, and B. Müller, Phys. Rep. 442, 38 (2007), arXiv:astro-ph/0612072.
  7. V. S. Imshennik and D. K. Nadezhin, Sov. J. Experim. Theoret. Phys. 36, 821 (1973).
  8. M. Herant, W. Benz, W. R. Hix, C. L. Fryer, and S. A. Colgate, Astrophys. J. 435, 339 (1994), arXiv:astro-ph/9404024.
  9. A. Burrows, J. Hayes, and B. A. Fryxell, Astrophys. J. 450, 830 (1995), arXiv:astro-ph/9506061.
  10. J. W. Murphy and C. Meakin, Astrophys. J. 742(2), id.74 (2011), arXiv:1106.5496 [astro-ph.SR].
  11. J. C. Dolence, A. Burrows, and W. Zhang, Astrophys. J. 800(1), id.10 (2015), arXiv:1403.6115 [astro-ph.SR].
  12. S. M. Couch and C. D. Ott, Astrophys. J. 778, id.L7 (2013), arXiv:1309.2632 [astro-ph.HE].
  13. A. Wongwathanarat, E. Müller, and H.-T. Janka, Astron. and Astrophys. 577, id.A48 (2015), arXiv:1409.5431 [astro-ph.HE].
  14. S. M. Couch and C. D. Ott, Astrophys. J. 799(1), id.5 (2015), arXiv:1408.1399 [astro-ph.HE].
  15. D. Radice, C. D. Ott, E. Abdikamalov, S. M. Couch, R. Haas, and E. Schnetter, Astrophys. J. 820(1), id.76 (2016), arXiv:1510.05022 [astro-ph.HE].
  16. A. Burrows and D. Vartanyan, Nature 589, 29 (2021), a-rXiv:2009.14157 [astro-ph.SR].
  17. V. M. Chechetkin, S. D. Ustyugov, A. A. Gorbunov, and V. I. Polezhaev, Astron. Letters 23, 30 (1997).
  18. I. V. Baikov, V. M. Suslin, V. M. Chechetkin, V. Bychkov, and L. Stenflo, Astron. Rep. 51, 274 (2007).
  19. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 60, 655 (2016).
  20. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 62, 251 (2018).
  21. V. M. Chechetkin and A. G. Aksenov, Phys. Atomic Nuclei 81, 128 (2018).
  22. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 65, 916 (2021).
  23. V. M. Suslin, S. D. Ustyugov, V. M. Chechetkin, and G. P. Churkina, Astron. Rep. 45, 241 (2001).
  24. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 56, 193 (2012).
  25. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 58, 442 (2014).
  26. I. V. Baikov and V. M. Chechetkin, Astron. Rep. 48, 229 (2004).
  27. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 63, 900 (2019).
  28. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 62, 834 (2018).
  29. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 66, 1 (2022).
  30. R. M. Bionta, G. Blewitt, C. B. Bratton, D. Casper, and A. Ciocio, Phys. Rev. Letters 58, 1494 (1987).
  31. K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, and Y. Oyama, Phys. Rev. Letters 58, 1490 (1987).
  32. E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, and I. V. Krivosheina, Sov. J. Experim. Theoret. Phys. Letters 45, 589 (1987).
  33. R. Schaeffer, Y. Declais, and S. Jullian, Nature 330, 142 (1987).
  34. J. Larsson, C. Fransson, D. Alp, P. Challis, et al., Astrophys. J. 886, id.147 (2019), arXiv:1910.09582 [astro-ph.HE].
  35. J. E. Reynolds, D. L. Jauncey, L. Staveley-Smith, A. K. Tzi-oumis, et al., Astron. and Astrophys. 304, 116 (1995).
  36. S. E. Boggs, F. A. Harrison, H. Miyasaka, B. W. Grefenstette, et al., Science 348(6235), 670 (2015).
  37. A. A. Baranov and V. M. Chechetkin, Astron. Rep. 55, 525 (2011).
  38. V. S. Imshennik and O. G. Ryazhskaya, Astron. Letters 30, 14 (2004), astro-ph/0401613.
  39. V. S. Imshennik and D. V. Popov, Astron. Letters 28, 465 (2002).
  40. A. G. Aksenov, E. A. Zabrodina, V. S. Imshennik, and D. K. Nadezhin, Astron. Letters 23, 677 (1997).
  41. M. V. Popov, A. A. Filina, A. A. Baranov, P. Chardonnet, and V. M. Chechetkin, Astrophys. J. 783, id.43 (2014).
  42. G. S. Bisnovatyi-Kogan, Astronomicheskii Zhurnal 47(8), 813 (1970).
  43. G. S. Bisnovatyi-Kogan, S. G. Moiseenko, and N. V. Ardelyan, Phys. Atomic Nuclei 81, 266 (2018), -arXiv:1903.12628 [astro-ph.HE].
  44. O. G. Ryazhskaya, Physics Uspekhi 49, 1017 (2006).
  45. B. J. Owen, L. Lindblom, and L. S. Pinheiro, Astrophys. J. 935, id.L7 (2022), arXiv:2206.01168 [gr-qc].
  46. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 57, 498 (2013).
  47. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (New York, Wiley: A Wiley-Interscience Publ., 1986).
  48. M. V. Sazhin, S. D. Ustyugov, and V. M. Chechetkin, J. Experim. Theor. Phys. 86(4), 629 (1998).
  49. S. W. Bruenn, Astrophys. J. Suppl. 58, 771 (1985).
  50. G. S. Bisnovatyi-Kogan, Astrophysics 55(3), 387 (2012), arXiv:1203.0997 [astro-ph.HE].
  51. A. G. Aksenov, Universe 8, 372 (2022).
  52. A. G. Aksenov, Comp. Math. and Math. Physics 55, 1752 (2015).
  53. G. Vereshchagin and A. Aksenov, Relativistic Kinetic Theory With Applications in Astrophysics and Cosmology (Cambridge University Press, 2017).
  54. A. G. Aksenov, V. F. Tishkin, and V. M. Chechetkin, Math. Models Computer Simulations 11, 360 (2019).
  55. C. W. Gear, Numerical initial value problems in ordinary differential equations (Upper Saddle River, NJ United States: Prentice Hall PTR, 1971).
  56. A. G. Aksenov, Astron. Letters 25, 185 (1999).
  57. A. G. Aksenov and S. I. Blinnikov, Astron. and Astrophys. 290, 674 (1994).
  58. A. G. Aksenov, S. I. Blinnikov, and V. S. Imshennik, Astron. Rep. 39, 638 (1995).
  59. P. Ledoux, Astrophys. J. 105, 305 (1947).
  60. Г. С. Бисноватый-Коган, Физические вопросы теории звездной эволюции (М.: Наука, 1989).
  61. M. A. Skinner, J. C. Dolence, A. Burrows, D. Radice, and D. Vartanyan, Astrophys. J. Suppl. 241, id.7 (2019).
  62. S. Chandrasekhar and N. R. Lebovitz, Astrophys. J. 138, 185 (1963).
  63. K. Abe, P. Adrich, H. Aihara, R. Akutsu, et al., Astrophys. J. 916, id.15 (2021).
  64. H. Nagakura, Monthly Not. Roy. Astron. Soc. 500, 319 (2021), arXiv:2008.10082 [astro-ph.HE].
  65. H. Nagakura, A. Burrows, and D. Vartanyan, Monthly Not. Roy. Astron. Soc. 506, 1462 (2021), ar-Xiv:2102.11283 [astro-ph.HE].
  66. D. Vartanyan, M. S. B. Coleman, and A. Burrows, Monthly Not. Roy. Astron. Soc. 510, 4689 (2022), arX-iv:2109.10920 [astro-ph.SR].

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (119KB)
3.

Download (144KB)
4.

Download (32KB)
5.

Download (792KB)

Copyright (c) 2023 А.Г. Аксенов, В.М. Чечеткин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies