Laboratory Simulation of Photosynthesis in a Wide Range of Electromagnetic and Radiation Environment Parameters

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of studying the limits of stability and mechanisms of adaptation of living systems to environmental parameters that vary over a wide range is briefly analyzed. The main attention is focused on the analysis of the electromagnetic environment and background radiation. These factors vary relatively little on the modern Earth, which leads to their insufficient knowledge. At the same time, they present serious challenges for future space missions. One of the main methods for studying the influence of such factors on living organisms is laboratory simulation. Previous experiments have demonstrated the need to develop a new laboratory setup, the requirements for the parameters of which are presented in this paper. In general, the setup will have a high potential for solving the problems of modeling the effect of astro-geophysical factors on the physiological state of living organisms and, in particular, the activity of photosynthesis in higher plants. The implementation of the proposed program of laboratory simulation experiments will allow us to advance in understanding the problems of life evolution, the mechanisms of the possible influence of solar activity on the biosphere, and studies of the role of the biosphere in global climate changes of planets at various time horizons.

About the authors

M. A. Grinberg

Lobachevsky State University; Institute of Applied Physics, Russian Academy of Sciences

Email: mareev@ipfran.ru
Nizhny Novgorod, Russia; Nizhny Novgorod, Russia

V. A. Vodeneev

Lobachevsky State University; Institute of Applied Physics, Russian Academy of Sciences

Email: mareev@ipfran.ru
Nizhny Novgorod, Russia; Nizhny Novgorod, Russia

N. V. Il’in

Lobachevsky State University; Institute of Applied Physics, Russian Academy of Sciences

Email: mareev@ipfran.ru
Nizhny Novgorod, Russia; Nizhny Novgorod, Russia

E. A. Mareev

Lobachevsky State University; Institute of Applied Physics, Russian Academy of Sciences

Author for correspondence.
Email: mareev@ipfran.ru
Nizhny Novgorod, Russia; Nizhny Novgorod, Russia

References

  1. G. Elhalel, C. Price, D. Fixier, A. Shainberg, Nature. Scientific Reports 9, 1645 (2019).
  2. C. Doglioni, J. Pignatti, M. Coleman, Geosc. Front. 7, 865–873 (2016).
  3. Y. Berkovich, I. Konovalova, S. O. Smolyanina, A. N. Erokhin, O. V. Avercheva, E. M. Bassarskaya, G. V. Kochetova, T. V. Zhigalova, O. S. Yakovleva, I. G. Tarakanov, REACH 6, 11–24 (2017).
  4. E. N. Baranova, M. A. Levinskikh, A. A. Gulevich, Life 9, 81 (2019).
  5. V. De Micco, C. Arena, D. Pignalosa, M. Durante, Radiat. Environ. Biophys. 50, 1–19 (2011).
  6. M. E. Maffei, Front. Plant Sci. 5, 445 (2014).
  7. S. V. Gudkov, M. A. Grinberg, V. S. Sukhov, V. A. Vodeneev, J. Environ Radioact. 202, 8–24 (2019).
  8. M. Sarraf, S. Kataria, H. Taimourya, L. O. Santos, R. D. Menegatti, M. Jain, M. Ihtisham, S. Liu, Plants 9, 1139 (2020).
  9. A. De Souza-Torres, L. Sueiro-Pelegrín, M. Zambrano-Reyes, I. Macías-Socarras, M. González-Posada, D. Gar-cía-Fernández, Int. J. Rad. Biol. 96, 951–957 (2020).
  10. P. Y. Volkova, E. V. Bondarenko, E. Kazakova, Curr. Opin. Toxicol. 30, 100334 (2022).
  11. V. N. Binhi, A. B. Rubin, Cells 11, 274 (2022).
  12. I. Kovalchuk, J. Molinier, Y. Yao, A. Arkhipov, O. Kovalchuk, Mutat. Res. 624, 101–113 (2007).
  13. E. J. Goh, J. B. Kim, W. J. Kim, B. K. Ha, S. H. Kim, S. Y. Kang, Y. W. Seo, D. S. Kim, Radiat. Environ. Biophys. 53, 677–693 (2014).
  14. M. V. Kryvokhyzha, K. V. Krutovsky, N. M. Rashydov, Int. J. Rad. Biol. 95, 626–634 (2019).
  15. M. Grinberg, S. V. Gudkov, I. V. Balalaeva, E. Gromova, Y. V. Sinitsyna, V. S. Sukhov, V. A. Vodeneev, Environ. Exp. Bot. 184, 104378 (2021).
  16. V. Sukhov, E. Sukhova, Y. Sinitsyna, E. Gromova, N. Mshenskaya, A. Ryabkova, N. Ilin, V. Vodeneev, E. Mareev, C. Price. Cells. 10, 149 (2021).
  17. E. Sukhova, E. Gromova, L. Yudina, A. Kior, Y. Vetrova, N. Ilin, E. Mareev, V. Vodeneev, V. Sukhov, Plants 10, 2207 (2021).
  18. M. Grinberg, M. Mudrilov, E. Kozlova, V. Sukhov, F. Sa-rafanov, A. Evtushenko, N. Ilin, V. Vodeneev, C. Price, E. Mareev, Plant Signal. Behav. 17, 2021664 (2022).
  19. J. L. Araus, S. C. Kefauver, O. Vergara-Díaz, A. Gracia-Romero, F. Z. Rezzouk, J. Segarra, M. L. Buchaillot, M. Chang-Espino, T. Vatter, R. Sanchez-Bragado, J. A. Fernandez-Gallego, M. D. Serret, J. Bort, J. Integr. Plant. Biol. 64, 592–618 (2022).
  20. D. Sun, K. Robbins, N. Morales, Q. Shu, H. Cen, Trends Plant. Sci. 27, 191–208 (2022).
  21. F. Tanner, S. Tonn, J. de Wit, G. Van den Ackerveken, B. Berger, D. Plett, Plant Methods 18, 35 (2022).
  22. K. Maxwell, G. N. Johnson, J. Exp. Bot. 51, 659–68 (2000).
  23. A. E. Huber, T. L. Bauerle, J. Exp. Bot. 67, 2063–2079 (2016).
  24. S. K. Chatterjee, O. Malik, S. Gupta, Biosensors (Basel) 8, 83 (2018).

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (187KB)
3.

Download (1MB)
4.

Download (498KB)
5.

Download (244KB)

Copyright (c) 2023 М.А. Гринберг, В.А. Воденеев, Н.В. Ильин, Е.А. Мареев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies