Dust Particles in Space: Opportunities for Experimental Research

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Space dust and dusty (complex) plasma are one of the most common manifestations of matter in space. Non-atmospheric bodies of the Solar System, such as the Moon, asteroids, comets, some satellites of the planets, are directly affected by external factors of outer space—solar electromagnetic radiation, interplanetary plasma flows, cosmic rays, micrometeors. Under the influence of these factors, regolith is formed on the surface of bodies during geological epochs. Under the influence of impacts of high-speed micrometeors, dust particles of regolith scatter at different speeds. Most of them return to the surface, but some form dust clouds or lose their gravitational connection with the parent body. Under the action of solar radiation, the surface acquires an electric charge, and dust particles under certain conditions can break away from the regolith surface and levitate. Observational evidence of such dynamic phenomena has been recorded on the Moon and on some asteroids. The study of the physical processes responsible for the activation of dust particles and their dynamics is of great interest for fundamental science and practical purposes. The article discusses the main processes occurring under the influence of outer space factors on regolith, as a result of which dust particles move and a near-surface plasma-dust exosphere is formed. Unresolved issues are discussed. Methods and means of laboratory modeling in studying the activation and dynamics of dust particles are considered.

About the authors

I. A. Kuznetsov

Space Research Institute, Russian Academy of Sciences

Email: kia@iki.rssi.ru
Moscow, Russia

A. V. Zakharov

Space Research Institute, Russian Academy of Sciences

Email: kia@iki.rssi.ru
Moscow, Russia

L. M. Zelenyi

Space Research Institute, Russian Academy of Sciences

Email: kia@iki.rssi.ru
Moscow, Russia

S. I. Popel

Space Research Institute, Russian Academy of Sciences

Email: kia@iki.rssi.ru
Moscow, Russia

T. I. Morozova

Space Research Institute, Russian Academy of Sciences

Email: kia@iki.rssi.ru
Moscow, Russia

I. A. Shashkova

Space Research Institute, Russian Academy of Sciences

Email: kia@iki.rssi.ru
Moscow, Russia

G. G. Dolnikov

Space Research Institute, Russian Academy of Sciences

Email: kia@iki.rssi.ru
Moscow, Russia

A. N. Lyash

Space Research Institute, Russian Academy of Sciences

Email: kia@iki.rssi.ru
Moscow, Russia

A. E. Dubov

Space Research Institute, Russian Academy of Sciences

Email: kia@iki.rssi.ru
Moscow, Russia

M. E. Viktorov

Institute of Applied Physics, Russian Academy of Sciences

Email: kia@iki.rssi.ru
Nizhny Novgorod, Russia

A. P. Topchieva

Institute of Astronomy, Russian Academy of Sciences

Email: kia@iki.rssi.ru
Moscow, Russia

B. A. Klumov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: kia@iki.rssi.ru
Moscow, Russia

A. D. Usachev

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: kia@iki.rssi.ru
Moscow, Russia

E. A. Lisin

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: kia@iki.rssi.ru
Moscow, Russia

M. M. Vasiliev

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: kia@iki.rssi.ru
Moscow, Russia

O. F. Petrov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: kia@iki.rssi.ru
Moscow, Russia

A. Yu. Poroikov

National Research University “Moscow Power Engineering Institute” (MPEI)

Author for correspondence.
Email: kia@iki.rssi.ru
Moscow, Russia

References

  1. R. J. Trumpler, Publ. Astron. Soc. Pacific 42, 214 (1930).
  2. R. Z. Sagdeev, J. Blamont, A. A. Galeev, V. I. Moroz, V. D. Shapiro, V. I. Shevchenko, and K. Szego, Nature 321, 259 (1986).
  3. J. E. Colwell, S. Batiste, M. Horányi, S. Robertson, and S. Sture, Rev. Geophys. 45, id. 2006 (2007).
  4. C. M. Katzan and J. L. Edwards, Lunar dust transport and potential interactions with power system components, NASA-CR-4404 E-6145, Project: RTOP 506-41-41, id. 19920002733 (1991).
  5. J. R. Gaier, The effects of lunar dust on eva systems during the apollo missions, NASA/TM-2005-213610/REV1 E-15071-1/REV1, id. 20070021819 (2005). http://www.sti.nasa.gov.
  6. E. Kallio, S. Dyadechkin, P. Wurz, and M. Khodachenko, Planet. Space Sci. 166, 9 (2019).
  7. P. O’Brien, S. Byrne, and T. J. Zega, 50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132), id. 2003 (2019), https://www.hou.usra.edu/, meetings/lpsc2019/pdf/2003.pdf .
  8. S. I. Popel and L. M. Zelenyi, J. Plasma Phys. 80, 885 (2014.
  9. S. I. Popel, L. M. Zelenyi, A. P. Golub’, and A. Y. Dubinskii, Planet. Space Sci. 156, 71 (2018).
  10. M. Horányi, Z. Sternovsky, M. Lankton, C. Dumont, et al., Space Sci. Rev. 185, 93 (2014).
  11. M. Horányi, J. R. Szalay, S. Kempf, J. Schmidt, E. Grün, R. Srama, and Z. Sternovsky, Nature 522, 324 (2015).
  12. E. Grün, H. A. Zook, H. Fechtig, and R. H. Giese, Icarus 62, 244 (1985).
  13. E. Grün, M. Horányi, and Z. Sternovsky, Planet. Space Sci. 59, 1672 (2011).
  14. К. П. Флоренский, А. В. Иванов, в сб. Космохимия Луны и планет (М.: Наука, 1975), с. 439 (1975).
  15. H. A. Zook, Planet. Space Sci. 23, 1391 (1975).
  16. D. E. Brownlee, W. Bucher, P. Hodge, W. Bucher, and P. Hodge, Analysis of Surveyor 3 material and photographs returned by Apollo 12, NASA-SP-284 LC-70-181874, id. 19720019081 (1972).
  17. Y. Liu and L. A. Taylor, Planet. Space Sci. 59, 1769 (2011).
  18. P. Wurz, U. Rohner, J. A. Whitby, C. Kolb, H. Lammer, P. Dobnikar, and J. A. Martín-Fernández, Icarus 191, 486 (2007).
  19. W. C. Feldman, D. J. Lawrence, R. C. Elphic, B. L. Barraclough, S. Maurice, I. Genetay, and A. B. Binder, J. Geophys. Res. Planets 105, 4175 (2000).
  20. D. H. Crider and R. R. Vondrak, Adv. Space Research 30, 1869 (2002).
  21. D. J. McComas, F. Allegrini, P. Bochsler, P. Frisch, et al., Geophys. Res. Letters 36, id. L12104 (2009).
  22. M. Wieser, S. Barabash, Y. Futaana, M. Holmström, et al., Planet. Space Sci. 57 (14–15), 2132 (2009).
  23. C. Lue, J. S. Halekas, A. R. Poppe, and J. P. McFadden, J. Geophys. Res. Space Physics 123 (7), 5289 (2018).
  24. Y. Saito, S. Yokota, T. Tanaka, K. Asamura, et al., Geophys. Res. Letters 35(24), id. L24205 (2008).
  25. A. Bhardwaj, M. B. Dhanya, A. Alok, S. Barabash, et al., Geoscience Letters 2, id. 10 (2015).
  26. M. Hapgood, Ann. Geophysicae 25, 2037 (2007).
  27. Y. Asano, I. Shinohara, A. Retinó, P. W. Daly, et al., J. Geophys. Res. Space Physics 115 (A5), id. A05215 (2010).
  28. J. Vaverka, I. Richterová, J. Pavlů, J. afránková, and Z. emeek, Astrophys. J. 825 (2), id. 133 (2016).
  29. J. L. Molaro, S. Byrne, and S. A. Langer, J. Geophys. Res. Planets 120, 255 (2015).
  30. D. Vaniman, R. Reedy, G. Heiken, G. Olhoeft, and W. Men-dell, Lunar Sourcebook, A User’s Guide to the Moon, (Cambridge University Press, 1991), pp. 27.
  31. J. S. Halekas, G. T. Delory, D. A. Brain, R. P. Lin, et al., Geophys. Res. Letters 34, 2111 (2007).
  32. J. S. Halekas, G. T. Delory, R. P. Lin, T. J. Stubbs, and W. M. Farrell, J. Geophys. Res. Space Physics 114, 5110 (2009).
  33. C. M. Pieters and S. K. Noble, J. Geophys. Res. Planets 121, 1865 (2016).
  34. E. N. Slyuta, Solar System Res. 48, 330 (2014).
  35. H. J. Melosh, Planetary Surface Processes (Cambridge: Cambridge University Press, 2011), Ser.: Cambridge Planetary Science (13).
  36. S. I. Popel, A. P. Golub’, E. A. Lisin, Y. N. Izvekova, B. Atamaniuk, G. G. Dolnikov, A. V. Zakharov, and L. M. Zelenyi, J. Physics Conf. Ser. 774 (1), id. 012175 (2016).
  37. S. I. Popel, A. P. Golub’, A. V. Zakharov, and L. M. Ze-lenyi, Plasma Phys. Rep. 46 (3), 265 (2020).
  38. I. V. Nemtchinov, V. V. Shuvalov, N. A. Artemieva, I. B. Ko-sarev, and S. I. Popel, Intern. J. Impact Engineering 27, 521 (2002).
  39. А. Н. Колмогоров, Докл. АН СССР 31 (2), 99 (1941).
  40. V. V. Adushkin, L. M. Pernik, and S. I. Popel, Doklady Earth Sciences 415, 820 (2007).https://doi.org/10.1134/S1028334X07050352
  41. W. M. Farrell, T. J. Stubbs, R. R. Vondrak, G. T. Delory, and J. S. Halekas, Geophys. Res. Letters 34 (14), id. L14201 (2007).
  42. W. M. Farrell, T. J. Stubbs, J. S. Halekas, G. T. Delory, M. R. Collier, R. R. Vondrak, and R. P. Lin, Geophys. Res. Letters 35 (5), id. L05105 (2008).
  43. W. M. Farrell, T. J. Stubbs, G. T. Delory, R. R. Vondrak, M. R. Collier, J. S. Halekas, and R. P. Lin, Geophys. Res. Letters 35 (19), id. L19104 (2008).
  44. N. Borisov and U. Mall, Planet. Space Sci. 54, 572 (2006).
  45. S. I. Popel, L. M. Zelenyi, and B. Atamaniuk, Phys. Plasmas 22 (12), id. 123701 (2015).
  46. R. H. Manka, Astrophys. Space Sci. Library 37, 347 (1973).https://doi.org/10.1007/978-94-010-2647-5_22
  47. E. C. Whipple, Reports Progress Phys. 44 (11), 1197 (1981).
  48. R. F. Willis, M. Anderegg, B. Feuerbacher, and B. Fitton, in Photon and Particle Interactions with Surfaces in Space, Proc. of the 6th ESLAB Symposium, held in Noordwijk, September 26–29, 1972 (Dordrecht: Reidel), edited by R. J. L. Grard, Astrophys. Space Sci. Library 37, 389 (1973).
  49. B. Feuerbacher, M. Anderegg, B. Fitton, L. D. Laude, R. F. Willis, and R. J. L. Grard, Proc. of Lunar and Planetary Science Conference 3, 2655 (1972).
  50. T. J. Stubbs, W. M. Farrell, J. S. Halekas, J. K. Burchill, et al., Planet. Space Sci. 90, 10 (2014).
  51. G. R. Olhoeft, A. L. Frisillo, D. W. Strangway, and H. Sharpe, Moon 9, 79 (1974).
  52. J. W. Freeman and M. Ibrahim, Moon 14, 103 (1975).
  53. S. F. Singer and E. H. Walker, Icarus 1, 112 (1962).
  54. D. R. Criswell, Astrophys. Space Sci. Library 37, 545 (1973).
  55. J. J. Rennilson and D. R. Criswell, Moon 10, 121 (1974).
  56. D. R. Criswell and B. R. De, J. Geophys. Res. 82, 999 (1977).
  57. T. Nitter and O. Havnes, Earth, Moon, and Planets 56, 7 (1992).
  58. T. Nitter, T. K. Aslaksen, F. Melandso, and O. Havnes, IEEE Transactions on Plasma Science 22 (2), 159 (1994).
  59. S. Doe, J. Burns, D. Pettit, J. Blacic, and P. Keaton, in Engineering, Construction, and Operations in Space, Amer. Soc. of Civ. Eng. (New York), p. 907 (1994).
  60. T. Nitter, O. Havnes, and F. Melandsø, J. Geophys. Res. Space Physics 103 (A4), 6605 (1998).
  61. A. A. Sickafoose, J. E. Colwell, M. Horányi, and S. Ro-bertson, J. Geophys. Res. Space Physics 107 (A11), id. 1408 (2002).
  62. L. J. Spitzer, Astrophys. J. 93, 369 (1941).
  63. D. A. Mendis and M. Rosenberg, 32, 419 (1994).
  64. N. Borisov and U. Mall, J. Plasma Phys. 67, 277 (2002).
  65. Ф. Чен, Введение в физику плазмы (М.: Мир, 1987).
  66. C. A. Dukes and R. A. Baragiola, Planet. Space Sci. 89, 36 (2013).
  67. E. Walbridge, J. Geophys. Res. 78, 3668 (1973).
  68. P. Lee, Icarus 124, 181 (1996).
  69. N. D. Borisov and A. V. Zakharov, Solar System Res. 48, 22 (2014).
  70. M. S. Robinson, P. C. Thomas, J. Veverka, S. Murchie, and B. Carcich, Nature 413 (6854), 396 (2001).
  71. N. Thomas, B. Davidsson, M. R. El-Maarry, S. Fornasier, et al., Astron. and Astrophys. 583, id. A17 (2015).
  72. B. A. Smith, L. Soderblom, R. Beebe, J. Boyce, et al., Science 212, 163 (1981).
  73. B. A. Smith, L. Soderblom, R. Batson, P. Bridges, et al., Science 215, 504 (1982).
  74. D. A. Mendis and M. Horányi, Rev. Geophys. 51, 53 (2013).
  75. T. A. Nordheim, G. H. Jones, J. S. Halekas, E. Roussos, and A. J. Coates, Planet. Space Sci. 119, 24 (2015).
  76. A. J. Coates, Adv. Space Research 33, 1977 (2004).
  77. K. Szegö, K. H. Glassmeier, R. Bingham, A. Bogdanov, et al., Space Sci. Rev. 94, 429 (2000).
  78. W. H. Ip and W. I. Axford, Nature 325 (6103), 418 (1987).
  79. A. A. Galeev, T. E. Cravens, and T. I. Gombosi, Astrophys. J. 289, 807 (1985).
  80. K.-H. Glassmeier, Philosophical Transactions Roy. Soc. A: Math., Phys. Engin. Sci. 375 (2097), id. 20160256 (2017).
  81. M. B. Vasil’ev, V. A. Vinogradov, A. S. Vyshlov, O. G. Ivanovskii, et al., Cosmic Research 12, 102 (1974).
  82. A. S. Vyshlov, in Space research XVI, Proc. of the Open Meetings of Working Groups on Physical Sciences, May 29 – June 7, 1975, and Symposium and Workshop on Results from Coordinated Upper Atmosphere Measurement Programs, Varna, Bulgaria, May 29–31, 1975 (Berlin, East Germany, Akademie-Verlag GmbH, 1976), p. 945.
  83. T. J. Stubbs, D. A. Glenar, W. M. Farrell, R. R. Vondrak, M. R. Collier, J. S. Halekas, and G. T. Delory, Planet. Space Sci. 59, 1659 (2011).
  84. J. E. McCoy and D. R. Criswell, in Lunar Science Conference, 5th, Houston, Tex., March 18–22, 1974, Proceedings 3 (New York: Pergamon Press, Inc., 1974), p. 2991 (1974).
  85. H. A. Zook and J. E. McCoy, Geophys. Res. Letters 18, 2117 (1991).
  86. T. J. Stubbs, R. R. Vondrak, and W. M. Farrell, Adv. Space Research 37, 59 (2006).
  87. L. Ksanfomality, S. Murchie, D. Britt, T. Duxbury, et al., Planet. Space Sci. 39, 311 (1991).
  88. J. B. Pollack, J. Veverka, K. Pang, D. Colburn, A. L. Lane, and J. M. Ajello, Science 199, 66 (1978).
  89. A. G. Duba and J. N. Boland, in Lunar and Planetary Science VI, Abstract, p. 232 (1984).
  90. A. Zakharov, M. Horányi, P. Lee, O. Witasse, and F. Cipriani, Planet. Space Sci. 102, 171 (2014).
  91. S. L. Soter, Dust Belts of Mars, Ph. D. thesis, Cornell University, New York (1971).
  92. W.-H. Ip and M. Banaszkiewicz, Geophys. Res. Letters 17, 857 (1990).
  93. M. Banaszkiewicz and W.-H. Ip, Icarus 90, 237 (1991).
  94. K. Kholshevnikov, A. Krivov, L. Sokolov, and V. Titov, Icarus 105, 351 (1993).
  95. H. Ishimoto and T. Mukai, Planet. Space Sci. 42, 691 (1994).
  96. A. Juhász and M. Horányi, J. Geophys. Res. Planets 100 (E2), 3277 (1995).
  97. A. V. Krivov and D. P. Hamilton, Icarus 128, 335 (1997).
  98. N. Divine, J. Geophys. Res. Planets 98 (E9), 17029 (1993).
  99. A. V. Krivov, A. G. Feofilov, and V. V. Dikarev, Planet. Space Sci. 54, 871 (2006).
  100. A. Juhász, M. Tátrallyay, G. Gévai, and M. Horányi, J. Geophys. Res. Planets 98, 1205 (1993).
  101. A. V. Krivov, Astron. and Astrophys. 291, 657 (1994).
  102. H. Ishimoto, H. Kimura, N. Nakagawa, and T. Mukai, Adv. Space Research 19, 123 (1997).
  103. T. C. Duxbury and A. C. Ocampo, Icarus 76, 160 (1988).
  104. M. R. Showalter, D. P. Hamilton, and P. D. Nicholson, Planet. Space Sci. 54, 844 (2006).
  105. A. V. Bogdanov, J. Geophys. Res. Space Physics 86, 6926 (1981).
  106. E. M. Dubinin, R. Lundin, N. F. Pissarenko, S. V. Ba-rabash, A. V. Zakharov, H. Koskinen, K. Schwingenshuh, and Y. G. Yeroshenko, Geophys. Res. Letters 17, 861 (1990).
  107. M. Øieroset, D. A. Brain, E. Simpson, D. L. Mitchell, T. D. Phan, J. S. Halekas, R. P. Lin, and M. H. Acuña, Icarus 206, 189 (2010).
  108. Y. Futaana, S. Barabash, M. Holmström, H. Nilsson, and R. Lundin, in European Planetary Science Congress 2009, held 14–18 September in Potsdam, Germany, p. 701 (2009), http://meetings.copernicus.org/epsc2009 .
  109. M. A. Kahre, J. R. Murphy, C. E. Newman, R. J. Wilson, B. A. Cantor, M. T. Lemmon, and M. J. Wolff, in Asteroids, Comets, Meteors – ACM2017, edited by R. M. Ha-berle, R. T. Clancy, F. Forget, M. D. Smith, and R. W. Zurek, p. 229 (2017).
  110. O. I. Korablev, V. A. Krasnopolsky, A. V. Rodin, and E. Chassefiére, Icarus 102, 76 (1993).
  111. V. I. Moroz, V. V. Kerzhanovich, and V. A. Krasnopol’skij, Cosmic Res. 29(1), 1 (1991).
  112. M. D. Smith, Ann. Rev. Earth and Planet. Sciences 36, 191 (2008).
  113. L. Montabone, F. Forget, E. Millour, R. J. Wilson, et al., Icarus 251, 65 (2015).
  114. L. Montabone, A. Spiga, D. M. Kass, A. Kleinböhl, F. Forget, and E. Millour, J. Geophys. Res. Planets 125 (8), id. e06111 (2020).
  115. T. Kuroda, A. S. Medvedev, P. Hartogh, and M. Takahashi, Geophys. Res. Letters 35 (23), id. L23202 (2008).
  116. C. E. Newman and M. I. Richardson, Icarus 257, 47 (2015).
  117. M. A. Kahre, J. L. Hollingsworth, R. M. Haberle, and R. J. Wilson, Icarus 260, 477 (2015).
  118. L. Neary and F. Daerden, Icarus 300, 458 (2018).
  119. M. Rapp and F.-J. Lübken, Atmospheric Chemistry and Physics 4, 2601 (2004).
  120. U. von Zahn, G. Baumgarten, U. Berger, J. Fiedler, and P. Hartogh, Atmospheric Chemistry and Physics 4, 2449 (2004).
  121. B. A. Klumov, G. E. Morfill, and S. I. Popel, J. Experim. Theor. Phys. 100, 152 (2005).
  122. B. A. Klumov, S. I. Popel, and R. Bingham, J. Experim. Theor. Phys. Letters 72, 364 (2000).
  123. А. В. Гуревич, А. Г. Литвак, А. Л. Вихарев, О. А. Иванов, Н. Д. Борисов, К. Ф. Сергейчев, УФН 170, 1181 (2000).
  124. Г. А. Аскарьян, Г. М. Батанов, И. А. Коссый, А. Ю. Костинский, Докл. АН СССР 302 (3), 566 (1988).
  125. A. N. Simonenko, in Physics and Dynamics of Meteors, IAU Symp. No. 33 held at Tatranska Lomnica, Czechoslovakia, 4–9 September 1967, edited by L. Kresak and P. M. Millman (Dordrecht: D. Reidel, 1968), p. 207.
  126. S. Okuzumi, Astrophys. J. 698, 1122 (2009).
  127. M. Horányi and C. K. Goertz, Astrophys. J. 361, 155 (1990).
  128. M. V. Gerasimov, B. A. Ivanov, O. I. Yakovlev, and Y. P. Dikov, Earth, Moon and Planets 80 (1), 209 (1998).
  129. М. А. Зайцев, М. В. Герасимов, Э. Н. Сафонова, А. С. Васильева, Астрон. вестн. 50 (2), 123 (2016).
  130. Т. И. Морозова, С. И. Попель, Физика плазмы 48 (7), 635 (2022).
  131. J. Dorschner and T. Henning, Astron. and Astrophys. Rev. 6, 271 (1995).
  132. G. E. Ciolek, in The Physics of the Interstellar Medium and Intergalactic Medium, held at Italy, June 20–24, 1994; edited by A. Ferrara, C. F. McKee, C. Heiles, and P. R. Shapiro (San Francisco, California: Astron. Soc. Pacific, 1995), ASP Conf. Ser. 80, 174.
  133. E. F. van Dishoeck, G. A. Blake, B. T. Draine, and J. I. Lunine, in Protostars and Planets III, edited by E. H. Levy and J. I. Lunine (Tucson, Arizona: University of Arizona Press, 1993), p. 163.
  134. C. P. Endres, S. Schlemmer, P. Schilke, J. Stutzki, and H. S. Müller, J. Molecular Spectroscopy 327, 95 (2016).
  135. A. Dalgarno and J. H. Black, Reports Progress Phys. 39, 573 (1976).
  136. C. M. Leung, E. Herbst, W. F. Huebner, C. M. Leung, E. Herbst, and W. F. Huebner, Astrophys. J. Suppl. 56, 231 (1984).
  137. L. B. D’Hendecourt, L. J. Allamandola, and J. M. Greenberg, Astron. and Astrophys. 152, 130 (1985).
  138. P. D. Brown and S. B. Charnley, Monthly Not. Roy. Astron. Soc. 244, 432 (1990).
  139. T. Albertsson, D. A. Semenov, A. I. Vasyunin, T. Henning, and E. Herbst, Astrophys. J. Suppl. 207, 27 (2013).
  140. D. McElroy, C. Walsh, A. J. Markwick, M. A. Cordiner, K. Smith, and T. J. Millar, Astron. and Astrophys. 550, id. A36 (2013).
  141. T. Grassi, S. Bovino, D. R. G. Schleicher, J. Prieto, D. Seifried, E. Simoncini, and F. A. Gianturco, Monthly Not. Roy. Astron. Soc. 439 (3), 2386 (2014), ar-Xiv:1311.1070 [astro-ph.GA]1311.1070.
  142. O. Biham, I. Furman, V. Pirronello, and G. Vidali, A-strophys. J. 553, 595 (2001).
  143. S. B. Charnley, Astrophys. J. 562, L99 (2001).
  144. A. Lipshtat and O. Biham, Phys. Rev. Letters 93, id. 170601 (2004).
  145. T. Stantcheva and E. Herbst, Astron. and Astrophys. 423, 241 (2004).
  146. Q. Chang, H. M. Cuppen, and E. Herbst, Astron. and Astrophys. 434, 599 (2005).
  147. T. Garrod, Astron. and Astrophys. 491, 239 (2008).
  148. A. I. Vasyunin and E. Herbst, Astrophys. J. 762, id. 86 (2012).
  149. V. Buch and R. Czerminski, J. Chemical Physics 95, 6026 (1998).
  150. A. Al-Halabi, R. Bianco, and J. T. Hynes, J. Chemical Physics A 106, 7639 (2002).
  151. A. Al-Halabi, A. W. Kleyn, E. F. van Dishoeck, M. C. van Hemert, and G. J. Kroes, J. Chemical Physics A 49, 10615 (2003).
  152. A. Al-Halabi, H. J. Fraser, G. J. Kroes, and E. F. van Dishoeck, Astron. and Astrophys. 422, 777 (2004).
  153. V. K. Veeraghattam, K. Manrodt, S. P. Lewis, and P. C. Stancil, Astrophys. J. 790, id. 4 (2014).
  154. E. R. Batista, P. Ayotte, A. Bilić, B. D. Kay, and H. Jónsson, Phys. Rev. Letters 95, 223201 (2005).
  155. Molecules [CDMS classic documentation], https://cdms.astro.uni-koeln.de/classic/molecules .
  156. E. Herbst and E. F. V. Dishoeck, Ann. Rev. Astron. Astrophys. 47, 427 (2009).
  157. C. Ceccarelli, P. Caselli, F. Fontani, R. Neri, et al., Astrophys. J. 850, id. 176 (2017), arXiv:1710.10437 [astro-ph.SR].
  158. L. Testi, T. Birnstiel, L. Ricci, S. Andrews, et al., Protostars and Planets VI, edited by H. Beuther, R. S. Klessen, C. P. Dullemond, and T. Henning (Tucson: University of Arizona Press, 2014), p. 339.
  159. K. Wada, H. Tanaka, S. Okuzumi, H. Kobayashi, T. Suyama, H. Kimura, and T. Yamamoto, Astron. and Astrophys. 559, id. A62 (2013).
  160. K. Wada, H. Tanaka, T. Suyama, H. Kimura, and T. Yamamoto, Astrophys. J. 702, 1490 (2009).
  161. J. F. Gonzalez, G. Laibe, and S. T. Maddison, Monthly Not. Roy. Astron. Soc. 467, 1984 (2017).
  162. B. S. Hensley and B. T. Draine, arXiv:2208.12365 [astro-ph.GA] (2022).
  163. J. S. Mathis, W. Rumpl, and K. H. Nordsieck, Astrophys. J. 217, 425 (1977).
  164. B. T. Draine and H. M. Lee, Astrophys. J. 285, 89 (1984).
  165. J. Weingartner and B. Draine, Astrophys. J. 548, 296 (2001).
  166. S. Wang, A. Li, and B. W. Jiang, Monthly Not. Roy. Astron. Soc. 454, 569 (2015).
  167. D. C. Morton, J. F. Drake, E. B. Jenkins, J. B. Rogerson, L. Spitzer, and D. G. York, Astrophys. J. 181, L103 (1973).
  168. B. S. Hensley and B. T. Draine, Astrophys. J. 906, id. 73 (2021).
  169. R. Gehrz, in Interstellar Dust, Proc. of the 135th Symp. of the IAU, held in Santa Clara, California, 26–30 July 1988, edited by L. J. Allamandola and A. G. G. M. Tielens (Dordrecht: Kluwer Academic Publishers, 1989), p. 445.
  170. C. McKee, in Interstellar Dust, Proc. of the 135th Symp. of the IAU, held in Santa Clara, California, 26–30 July 1988, edited by L. J. Allamandola and A. G. G. M. Tielens (Dordrecht: Kluwer Academic Publishers, 1989), p. 431.
  171. R. Tazaki, K. Ichikawa, and M. Kokubo, Astrophys. J. 892, id. 84 (2020).
  172. A. P. Jones, A. G. G. M. Tielens, D. J. Hollenbach, and C. F. McKee, Astrophys. J. 433, 797 (1994).
  173. K. M. Douglas, M. A. Blitz, W. Feng, D. E. Heard, J. M. Plane, H. Rashid, and P. W. Seakins, Icarus 321, 752 (2019).
  174. M. Minissale, Y. Aikawa, E. Bergin, M. Bertin, et al., Amer. Chemical Soc. Earth and Space Chemistry 6 (3), 597 (2022).
  175. T. E. Sheridan, J. Goree, Y. T. Chiu, R. L. Rairden, and J. A. Kiessling, J. Geophys. Res. Space Physics 97, 2935 (1992).
  176. T. M. Flanagan and J. Goree, Phys. Plasmas 13, 123504 (2006).
  177. T. E. Sheridan and A. Hayes, App. Phys. Letters 98 (9), id. 091501 (2011), arXiv:1102.1986 [physics.plasm-ph].
  178. C. M. Hartzell and D. J. Scheeres, Planet. Space Sci. 59, 1758 (2011).
  179. T. E. Sheridan, J. Appl. Phys. 113 (14), id. 143304 (2013).
  180. X. Wang, J. Schwan, H.-W. Hsu, E. Grün, and M. Ho-rányi, Geophys. Res. Letters 43, 6103 (2016).
  181. E. V. Rosenfeld and A. V. Zakharov, Icarus 338, id. 113538 (2020).
  182. X. Wang, J. Schwan, N. Hood, H.-W. Hsu, E. Grün, and M. Horányi, J. Visualized Experiments 2018, id. e57072 (2018), https://www.jove.com/v/57072/experimental-methods-dust-charging-mobilization-on-surfaces-with.
  183. A. Shu, A. Collette, K. Drake, E. Grün, et al., Rev. Sci. Instrum. 83, id. 075108 (2012).
  184. I. A. Kuznetsov, S. L. G. Hess, A. V. Zakharov, F. Cipriani, et al., Planet. Space Sci. 156, 62 (2018).
  185. I. Langmuir, C. G. Found, and A. F. Dittmer, Science (New York) 60, 392 (1924).
  186. H. Ikezi, Phys. Fluids 29, 1764 (1986).
  187. J. H. Chu and I. Lin, Phys. Rev. Letters 72, 4009 (1994).
  188. H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Möhlmann, Phys. Rev. Letters 73, 652 (1994).
  189. A. Melzer, T. Trottenberg, and A. Piel, Phys. Letters A 191, 301 (1994).
  190. Y. Hayashi and K. Tachibana, Japanese J. Appl. Phys. 33, L804 (1994).
  191. A. Shu, S. Bugiel, E. Grün, J. Hillier, M. Horányi, T. Munsat, and R. Srama, Planet. Space Sci. 89, 29 (2013).
  192. J. K. Hillier, Z. Sternovsky, S. Kempf, M. Trieloff, M. Guglielmino, F. Postberg, and M. C. Price, Planet. Space Sci. 156, 96 (2018).
  193. L. Nouzák, S. Hsu, D. Malaspina, F. M. Thayer, et al., Planet. Space Sci. 156, 85 (2018).
  194. J. I. Samaniego, X. Wang, L. Andersson, D. Malaspina, R. E. Ergun, and M. Horányi, J. Geophys. Res. Space Physics 123, 6054 (2018).
  195. N. Hood, A. Carroll, R. Mike, X. Wang, J. Schwan, H. W. Hsu, and M. Horányi, Geophys. Res. Letters 45 (24), 13.206 (2018).
  196. N. C. Orger, K. Toyoda, H. Masui, and M. Cho, Adv. Space Research 63, 3270 (2019).
  197. A. Champlain, J. C. Matéo-Vélez, J. F. Roussel, S. Hess, P. Sarrailh, G. Murat, J. P. Chardon, and A. Gajan, J. Geophys. Res. Space Physics 121, 103 (2016).
  198. I. Cermak, E. Gruen, and J. Svestka, Adv. Space Research 15, 59 (1995).
  199. N. D’Angelo, J. Physics D: Appl. Phys. 28, 1009 (1995).
  200. A. Barkan, N. D’Angelo, and R. Merlino, Planet. Space Sci. 44, 239 (1996).
  201. M. Schwabe, S. K. Zhdanov, H. M. Thomas, A. V. Ivlev, et al., New J. Physics 10, id. 033037 (2008).
  202. A. Barkan, R. L. Merlino, and N. D’Angelo, Phys. Plasmas 2, 3563 (1995).
  203. B. Tadsen, F. Greiner, S. Groth, and A. Piel, Phys. Plasmas 22, id. 113701 (2015).
  204. T. Deka, A. Boruah, S. K. Sharma, and H. Bailung, Phys. Plasmas 24, id. 093706 (2017).
  205. S. V. Annibaldi, A. V. Ivlev, U. Konopka, S. Ratynskaia, et al., New J. Physics 9, 327 (2007).
  206. J. Goree, B. Liu, M. Y. Pustylnik, H. M. Thomas, et al., Phys. Plasmas 27, id. 123701 (2020).
  207. M. Schwabe, S. A. Khrapak, S. K. Zhdanov, M. Y. Pustylnik, et al., New J. Physics 22, id. 083079 (2020).
  208. E. Thomas, R. Fisher, and R. L. Merlino, Phys. Plasmas 14, id. 123701 (2007).
  209. J. D. Williams, Phys. Rev. E: Statistical, Nonlinear, and Soft Matter Physics 89, id. 023105 (2014).
  210. R. L. Merlino, J. Plasma Phys. 80, 773 (2014).
  211. M. Schwabe, M. Rubin-Zuzic, S. Zhdanov, H. M. Thomas, and G. E. Morfill, Phys. Rev. Letters 99, id. 095002 (2007).
  212. C.-T. Liao, L.-W. Teng, C.-Y. Tsai, C.-W. Io, and I. Lin, Phys. Rev. Letters 100, id. 185004 (2008).
  213. T. Trottenberg, D. Block, and A. Piel, Phys. Plasmas 13, id. 042105 (2006).
  214. J. D. Williams, E. Thomas, and L. Marcus, Phys. Plasmas 15, id. 043704 (2008).
  215. I. Pilch, T. Reichstein, and A. Piel, Phys. Plasmas 16, id. 123709 (2009).
  216. E. Thomas, Phys. Plasmas 17, id. 043701 (2010).
  217. L. W. Teng, M. C. Chang, Y. P. Tseng, and I. Lin, Phys. Rev. Letters 103, id. 245005 (2009).
  218. P. K. Shukla and L. I, Phys. Letters A 374, 1165 (2010).
  219. S. K. Sharma, A. Boruah, Y. Nakamura, and H. Bailung, Phys. Plasmas 23, id. 053702 (2016).
  220. K. O. Menzel, O. Arp, and A. Piel, Phys. Rev. E: Statistical, Nonlinear, and Soft Matter Physics 84, id. 016405 (2011).
  221. K. O. Menzel, O. Arp, and A. Piel, Phys. Rev. E: Statistical, Nonlinear, and Soft Matter Physics 83, id. 016402 (2011).
  222. J. Pramanik, B. M. Veeresha, G. Prasad, A. Sen, and P. K. Kaw, Phys. Letters A 312, 84 (2003).
  223. Y. Y. Tsai, M. C. Chang, and L. I, Phys. Rev. E: Statistical, Nonlinear, and Soft Matter Physics 86, id. 045402 (2012).
  224. A. Melzer, H. Krüger, S. Schütt, and M. Mulsow, Phys. Plasmas 27, id. 033704 (2020).
  225. A. Melzer, H. Krüger, D. Maier, and S. Schütt, Rev. Modern Plasma Physics 5, 11 (2021).
  226. Y. Watanabe, J. Physics D: Appl. Phys. 39, 329 (2006).
  227. J. Berndt, E. Kovaević, I. Stefanović, O. Stepanović, S. H. Hong, L. Boufendi, and J. Winter, Contrib. Plasma Phys. 49, 107 (2009).
  228. S. Groth, F. Greiner, and A. Piel, Plasma Sources Sci. Technol. 28, id. 115016 (2019).
  229. B. Chutia, T. Deka, Y. Bailung, S. K. Sharma, and H. Bailung, Phys. Plasmas 28, id. 063703 (2021).
  230. B. Chutia, T. Deka, Y. Bailung, D. Sharma, S. K. Sharma, and H. Bailung, Phys. Plasmas 28, id. 123702 (2021).
  231. Y. A. Ussenov, E. von Wahl, Z. Marvi, T. S. Ramazanov, and H. Kersten, Vacuum 166, 15 (2019).
  232. S. Orazbayev, Y. Yerlanuly, A. Utegenov, Z. Moldabekov, M. Gabdullin, and T. Ramazanov, Nanotechnology 32, id. 455602 (2021).
  233. W. Don, S. Ruhunusiri, and J. Goree, IEEE Transactions on Plasma Science 42, 2688 (2014).
  234. J. M. Harper, G. Gogia, B. Wu, Z. Laseter, and J. C. Burton, Phys. Rev. Res. 2, id. 033500 (2020).
  235. A. V. Zakharov, A. Y. Poroykov, S. A. Bednyakov, A. N. Lyash, I. A. Shashkova, I. A. Kuznetsov, and G. G. Dolnikov, Measurement 171, id. 108831 (2021).
  236. В. Е. Фортов, А. П. Нефедов, О. С. Ваулина, А. М. Ли-паев, и др., ЖЭТФ 114, 2004 (1998).
  237. А. П. Нефедов, О. С. Ваулина, А. М. Липаев, В. И. Мо-лотков, и др., ЖЭТФ 122, 778 (2002).
  238. A. P. Nefedov, G. E. Morfill, V. E. Fortov, H. M. Thomas, et al., New J. Physics 5, 33 (2003).
  239. A. G. Khrapak, V. I. Molotkov, A. M. Lipaev, D. I. Zhu-khovitskii, et al., Contrib. Plasma Phys. 56, 253 (2016).
  240. A. V. Ivlev, G. E. Morfill, H. M. Thomas, C. Räth, et al., Phys. Rev. Letters 100, id. 095003 (2008).
  241. S. Khrapak, P. Huber, H. Thomas, V. Naumkin, V. Molotkov, and A. Lipaev, Phys. Rev. E 99, id. 053210 (2019).
  242. S. F. Savin, L. G. D’yachkov, M. M. Vasil’ev, O. F. Petrov, and V. E. Fortov, Technical Phys. Letters 35, 1144 (2009).
  243. S. F. Savin, L. G. D’yachkov, M. I. Myasnikov, O. F. Petrov, et al., JETP Letters 94, 508 (2011).
  244. O. F. Petrov, M. I. Myasnikov, L. G. D’Yachkov, M. M. Va-siliev, et al., Phys. Rev. E: Statistical, Nonlinear, and Soft Matter Physics 86, id. 036404 (2012).
  245. M. Y. Pustylnik, M. A. Fink, V. Nosenko, T. Antonova, et al., Rev. Sci. Instrum. 87, id. 093505 (2016).
  246. A. V. Zobnin, A. D. Usachev, A. M. Lipaev, O. F. Petrov, et al., J. Physics Conf. Ser. 774, id. 012174 (2016).
  247. S. Mitic, M. Y. Pustylnik, D. Erdle, A. M. Lipaev, et al., Phys. Rev. E 103, id. 063212 (2021).
  248. S. Jaiswal, M. Y. Pustylnik, S. Zhdanov, H. M. Thomas, et al., Phys. Plasmas 25, id. 083705 (2018).
  249. V. E. Fortov, A. P. Nefedov, V. A. Sinel’shchikov, A. D. Usachev, and A. V. Zobnin, Phys. Letters A 267, 179 (2000).
  250. R. E. Boltnev, M. M. Vasiliev, E. A. Kononov, and O. F. Petrov, JETP 126, 561 (2018).
  251. R. E. Boltnev, M. M. Vasiliev, E. A. Kononov, and O. F. Petrov, Sci. Rep. 9, id. 3261 (2019).
  252. M. M. Vasiliev, L. G. D’Yachkov, S. N. Antipov, R. Huijink, O. F. Petrov, and V. E. Fortov, Euro Physics Letters 93, id. 15001 (2011).
  253. O. F. Petrov, F. M. Trukhachev, M. M. Vasiliev, and N. V. Gerasimenko, JETP 126, 842 (2018).
  254. M. M. Vasiliev, S. N. Antipov, and O. F. Petrov, J. Physics A: Mathematical and General 39, 4539 (2006).
  255. E. A. Lisin, E. A. Kononov, E. A. Sametov, M. M. Vasiliev, and O. F. Petrov, Molecules 26, 7535 (2021).
  256. O. S. Vaulina, E. A. Lisin, A. V. Gavrikov, O. F. Petrov, and V. E. Fortov, Phys. Rev. Letters 103, id. 035003 (2009).
  257. E. A. Lisin, R. A. Timirkhanov, O. S. Vaulina, O. F. Petrov, and V. E. Fortov, New J. Physics 15, id. 53004 (2013).
  258. O. F. Petrov, M. M. Vasiliev, O. S. Vaulina, K. B. Stacenko, E. V. Vasilieva, E. A. Lisin, Y. Tun, and V. E. Fortov, Euro Physics Letters 111, id. 45002 (2015).
  259. E. A. Kononov, M. M. Vasiliev, O. F. Petrov, and E. V. Va-silieva, Nanomaterials 11, 2931 (2021).
  260. I. Kuznetsov, I. Shashkova, A. Poroykov, A. Zakharov, et al., Astronomy at the Epoch of Multimessenger Studies, Proc. of the BAK-2021 conference, held 23–28 August, 2021 in Moscow, p. 246, https://ui.adsabs.harvard.edu/abs/2022aems.conf..246K/abstract.
  261. E. Mullikin, H. Anderson, N. O’Hern, M. Farrah, et al., Astrophys. J. 910, id. 72 (2021).
  262. J. C. Santos, K.-J. Chuang, T. Lamberts, G. Fedoseev, S. Ioppolo, and H. Linnartz, Astrophys. J. Letters 931, id. L33 (2022).
  263. D. Qasim, G. Fedoseev, K. J. Chuang, J. He, S. Ioppolo, E. F. van Dishoeck, and H. Linnartz, Nature Astron. 4, 781 (2020).
  264. Н. Н. Скворцова, Д. В. Малахов, В. Д. Степахин, С. А. Майоров, и др., Письма в ЖЭТФ 106 (4) 240 (2017).

Supplementary files


Copyright (c) 2023 И.А. Кузнецов, А.В. Захаров, Л.М. Зеленый, С.И. Попель, Т.И. Морозова, И.А. Шашкова, Г.Г. Дольников, А.Н. Ляш, А.Е. Дубов, М.Е. Викторов, А.П. Топчиева, Б.А. Клумов, А.Д. Усачев, Е.А. Лисин, М.М. Васильев, О.Ф. Петров, А.Ю. Поройков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies