Synthesis, Mechanical Activation, Photocatalytic and Sorption Properties of High-Entropy Oxides Ca(Ti0.25Sn0.25Nb0.125Ta0.125M0.25)O3 (M = Fe, Zr) with a Perovskite Structure
- Autores: Estemirova S.K.1, Pechishcheva N.V1, Burdina L.G1
-
Afiliações:
- N. A. Vatolin Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences
- Edição: Volume 61, Nº 9-10 (2025)
- Páginas: 614–622
- Seção: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/378978
- DOI: https://doi.org/10.7868/S3034558825050097
- ID: 378978
Citar
Resumo
Palavras-chave
Sobre autores
S. Estemirova
N. A. Vatolin Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences
Email: esveta100@mail.ru
Yekaterinburg, Russian Federation
N. Pechishcheva
N. A. Vatolin Institute of Metallurgy, Ural Branch of the Russian Academy of SciencesYekaterinburg, Russian Federation
L. Burdina
N. A. Vatolin Institute of Metallurgy, Ural Branch of the Russian Academy of SciencesYekaterinburg, Russian Federation
Bibliografia
- Sarkar A., Breitung B, Hahn H. High entropy oxides: the role of entropy, enthalpy and synergy // Scr. Mater. 2020. V. 187. P. 43–48. https://doi.org/10.1016/j.scriptamat.2020.05.019
- Liu Z.-Y., Liu Y., Xu Y., Zhang H., Shao Z., Wang Z., Chen H. Novel high-entropy oxides for energy storage and conversion: from fundamentals to practical applications // Green Energy Environ. 2023. V. 8. P. 1341–1357. https://doi.org/10.1016/j.gee.2023.04.007
- Yu Y., Liu S., Wang H., Zhang S., Wang N., Jiang W., Liu C., Ding W., Zhang Z., Dong C. // Design, synthesis and photocatalytic performance of A32Ti8Sn8Nb4Ta4Me8O96 (A = Ba, Sr; Me = Fe, Ga) perovskite structure high entropy oxides // J. Solid State Chem. 2023. V. 317. P. 123694. https://doi.org/10.1016/j.jssc.2022.123694
- Akrami S., Edalati P., Fuji M., Edalati K. High-entropy ceramics: review of principles, production and applications // Mater. Sci. Eng. Rep. 2021. V. 146. P. 100644. https://doi.org/10.1016/j.mser.2021.100644
- Edalati P., Wang Q., Razavi-Khosroshahi H., Fuji M., Ishihara T., Edalati K. Photocatalytic hydrogen evolution on a high-entropy oxide // J. Mater. Chem. A. Mater. Energy Sustain. 2020. V. 8. P. 3814–3821. https://doi.org/10.1039/c9ta12846h
- Akrami S., Murakami Y., Watanabe M., Ishihara T., Arita M., Fuji M., Edalati K. Defective high-entropy oxide photocatalyst with high activity for CO2 conversion // Appl. Catal. B: Environ. 2022. V. 303. P. 120896. https://doi.org/10.1016/j.apcatb.2021.120896
- Shannon R.D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751–767. https:// doi.org/10.1107/S0567739476001551
- Ramadass N. ABO3-type oxides. Their structure and properties. A bird’s eye view // Mater. Sci. Eng. 1978. V. 36. № 2. P. 231–239. https://doi.org/10.1016/0025-5416(78)90076-9
- Miracle D.B., Senkov O.N. A Critical review of high entropy alloys and related concepts // Acta Mater. 2017. V. 122. P. 448–511. https://doi.org/10.1016/j.actamat.2016.08.081
- Jiang S., Hu T., Gild J., Zhou N., Nie J., Qin M., Harrington T., Vecchio K., Luo J. A new class of high-entropy perovskite oxides // Scr. Mater. 2018. V. 142. P. 116–120. https://doi.org/10.1016/j.scriptamat.2017.08.040.
- Takani N, Yamane H. Structure analysis of CaTi1−xSnxO3 (x = 0.0–1.0) solid solutions // Powder Diffr. 2014. V. 29. № 3. P. 254–259. doi: 10.1017/S0885715614000074
- Wan D., Yan B., Chen J., Wu S., Hong J., Song D. at al. New family of plasmonic photocatalysts without noble metals // Chem. Mater. 2019. V. 31. № 7. P. 2320–2327. https://doi.org/10.1021/acs.chemmater.8b04185
- Gasperin M. CaTaO3: un nouveau composé du type perovskite // Acta Crystallogr. 1958. V. 11. P. 739. https://doi.org/10.1107/S0365110X58001961
- Okuma H., Katayama Y., Kadowaki F., Tokumoto Y., Ueno K. Large Rashba spin–orbit coupling in metallic SrTaO3 thin films // Appl. Phys. 2024. V. 17. P. 093001. https://doi.org/10.35848/1882-0786/ad7932
- Wang P., Chen P., Kostka A., Marschall R., Wark M. Control of phase coexistence in calcium tantalate composite photocatalysts for highly efficient hydrogen production // Chem. Mater. 2013. V. 25. № 23. P. 4739–4745. https://doi.org/10.1021/cm402708h
- Takeda Y., Naka S., Takano M., Shinjo T., Takada T., Shimada M. Preparation and characterization of stoichiometric CaFeO3 // Mater. Res. Bull. 1978. V. 13. № 1. P. 61–66. https://doi.org/10.1016/0025-5408(78)90028-4
- Abdel-Khalek E.K., Askar A.A., Motawea M.A., Aboelnasr M.A., El-Bahnasawy H.H. Study of the influence of synthesis method in BaFeO3−δ perovskite on structural, optical, magnetic and antibacterial properties // Phys. B: Condens. Matter. 2022. V. 628. P. 413573. https://doi.org/10.1016/j.physb.2021.413573
- Дедушенко С.К., Перфильев Ю.Д. Некоторые аспекты идентификации степени окисления железа по мессбауэровским изомерным сдвигам // Изв. РАН. Сер. физ. 2017. Т. 81. № 7. С. 877–881. https://doi.org/10.7868/S0367676517070067
- Gautam A., Das S., Ahmad Md. Band gap engineering through calcium addition in (Mg,Co,Ni,Cu,Zn)O high entropy oxide for efficient photocatalysis // Surf. Interfaces. 2024. V. 46. P. 104054. https://doi.org/10.1016/j.surfin.2024.104054
Arquivos suplementares

