СИНТЕЗ, МЕХАНОАКТИВАЦИЯ, ФОТОКАТАЛИТИЧЕСКИЕ И СОРБЦИОННЫЕ СВОЙСТВА ВЫСОКОЭНТРОПИЙНЫХ ОКСИДОВ Ca(Ti0.25Sn0.25Nb0.125Ta0.125M0.25)O3 (M = Fe, Zr) СО СТРУКТУРОЙ ПЕРОВСКИТА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Высокоэнтропийные однофазные оксиды со структурой перовскита Ca(Ti0.25Sn0.25Nb0.125Ta0.125M0.25)O3 (M = Fe, Zr) были впервые синтезированы простым одностадийным керамическим методом и охарактеризованы рентгеновским дифракционным анализом. Порошки были подвергнуты механоактивации, в результате которой произошел частичный фазовый переход из орторомбической фазы в тетрагональную. Оба состава продемонстрировали способность к восстановлению Cr(VI) при освещении УФ-светом и высокую сорбционную активность по отношению к красителю метиленовый синий.

Об авторах

С. Х Эстемирова

Институт металлургии им. Н. А. Ватолина УрО Российской академии наук

Email: esveta100@mail.ru
Екатеринбург, Российская Федерация

Н. В Печищева

Институт металлургии им. Н. А. Ватолина УрО Российской академии наук

Екатеринбург, Российская Федерация

Л. Г Бурдина

Институт металлургии им. Н. А. Ватолина УрО Российской академии наук

Екатеринбург, Российская Федерация

Список литературы

  1. Sarkar A., Breitung B, Hahn H. High entropy oxides: the role of entropy, enthalpy and synergy // Scr. Mater. 2020. V. 187. P. 43–48. https://doi.org/10.1016/j.scriptamat.2020.05.019
  2. Liu Z.-Y., Liu Y., Xu Y., Zhang H., Shao Z., Wang Z., Chen H. Novel high-entropy oxides for energy storage and conversion: from fundamentals to practical applications // Green Energy Environ. 2023. V. 8. P. 1341–1357. https://doi.org/10.1016/j.gee.2023.04.007
  3. Yu Y., Liu S., Wang H., Zhang S., Wang N., Jiang W., Liu C., Ding W., Zhang Z., Dong C. // Design, synthesis and photocatalytic performance of A32Ti8Sn8Nb4Ta4Me8O96 (A = Ba, Sr; Me = Fe, Ga) perovskite structure high entropy oxides // J. Solid State Chem. 2023. V. 317. P. 123694. https://doi.org/10.1016/j.jssc.2022.123694
  4. Akrami S., Edalati P., Fuji M., Edalati K. High-entropy ceramics: review of principles, production and applications // Mater. Sci. Eng. Rep. 2021. V. 146. P. 100644. https://doi.org/10.1016/j.mser.2021.100644
  5. Edalati P., Wang Q., Razavi-Khosroshahi H., Fuji M., Ishihara T., Edalati K. Photocatalytic hydrogen evolution on a high-entropy oxide // J. Mater. Chem. A. Mater. Energy Sustain. 2020. V. 8. P. 3814–3821. https://doi.org/10.1039/c9ta12846h
  6. Akrami S., Murakami Y., Watanabe M., Ishihara T., Arita M., Fuji M., Edalati K. Defective high-entropy oxide photocatalyst with high activity for CO2 conversion // Appl. Catal. B: Environ. 2022. V. 303. P. 120896. https://doi.org/10.1016/j.apcatb.2021.120896
  7. Shannon R.D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751–767. https:// doi.org/10.1107/S0567739476001551
  8. Ramadass N. ABO3-type oxides. Their structure and properties. A bird’s eye view // Mater. Sci. Eng. 1978. V. 36. № 2. P. 231–239. https://doi.org/10.1016/0025-5416(78)90076-9
  9. Miracle D.B., Senkov O.N. A Critical review of high entropy alloys and related concepts // Acta Mater. 2017. V. 122. P. 448–511. https://doi.org/10.1016/j.actamat.2016.08.081
  10. Jiang S., Hu T., Gild J., Zhou N., Nie J., Qin M., Harrington T., Vecchio K., Luo J. A new class of high-entropy perovskite oxides // Scr. Mater. 2018. V. 142. P. 116–120. https://doi.org/10.1016/j.scriptamat.2017.08.040.
  11. Takani N, Yamane H. Structure analysis of CaTi1−xSnxO3 (x = 0.0–1.0) solid solutions // Powder Diffr. 2014. V. 29. № 3. P. 254–259. doi: 10.1017/S0885715614000074
  12. Wan D., Yan B., Chen J., Wu S., Hong J., Song D. at al. New family of plasmonic photocatalysts without noble metals // Chem. Mater. 2019. V. 31. № 7. P. 2320–2327. https://doi.org/10.1021/acs.chemmater.8b04185
  13. Gasperin M. CaTaO3: un nouveau composé du type perovskite // Acta Crystallogr. 1958. V. 11. P. 739. https://doi.org/10.1107/S0365110X58001961
  14. Okuma H., Katayama Y., Kadowaki F., Tokumoto Y., Ueno K. Large Rashba spin–orbit coupling in metallic SrTaO3 thin films // Appl. Phys. 2024. V. 17. P. 093001. https://doi.org/10.35848/1882-0786/ad7932
  15. Wang P., Chen P., Kostka A., Marschall R., Wark M. Control of phase coexistence in calcium tantalate composite photocatalysts for highly efficient hydrogen production // Chem. Mater. 2013. V. 25. № 23. P. 4739–4745. https://doi.org/10.1021/cm402708h
  16. Takeda Y., Naka S., Takano M., Shinjo T., Takada T., Shimada M. Preparation and characterization of stoichiometric CaFeO3 // Mater. Res. Bull. 1978. V. 13. № 1. P. 61–66. https://doi.org/10.1016/0025-5408(78)90028-4
  17. Abdel-Khalek E.K., Askar A.A., Motawea M.A., Aboelnasr M.A., El-Bahnasawy H.H. Study of the influence of synthesis method in BaFeO3−δ perovskite on structural, optical, magnetic and antibacterial properties // Phys. B: Condens. Matter. 2022. V. 628. P. 413573. https://doi.org/10.1016/j.physb.2021.413573
  18. Дедушенко С.К., Перфильев Ю.Д. Некоторые аспекты идентификации степени окисления железа по мессбауэровским изомерным сдвигам // Изв. РАН. Сер. физ. 2017. Т. 81. № 7. С. 877–881. https://doi.org/10.7868/S0367676517070067
  19. Gautam A., Das S., Ahmad Md. Band gap engineering through calcium addition in (Mg,Co,Ni,Cu,Zn)O high entropy oxide for efficient photocatalysis // Surf. Interfaces. 2024. V. 46. P. 104054. https://doi.org/10.1016/j.surfin.2024.104054

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).