Synthesis, Mechanical Activation, Photocatalytic and Sorption Properties of High-Entropy Oxides Ca(Ti0.25Sn0.25Nb0.125Ta0.125M0.25)O3 (M = Fe, Zr) with a Perovskite Structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

High-entropy single-phase oxides with the perovskite structure Ca(Ti0.25Sn0.25Nb0.125Ta0.125M0.25)O3 (M = Fe, Zr) were synthesized for the first time by a simple one-step ceramic method and characterized by X-ray diffraction analysis. The powders were subjected to mechanical activation, which resulted in a partial phase transition from an orthorhombic phase to a tetragonal one. Both compositions demonstrated the ability to reduce Cr(VI) when illuminated with uV light and high sorption activity with respect to the methylene blue dye.

About the authors

S. Kh Estemirova

N. A. Vatolin Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Email: esveta100@mail.ru
Yekaterinburg, Russian Federation

N. V Pechishcheva

N. A. Vatolin Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russian Federation

L. G Burdina

N. A. Vatolin Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russian Federation

References

  1. Sarkar A., Breitung B, Hahn H. High entropy oxides: the role of entropy, enthalpy and synergy // Scr. Mater. 2020. V. 187. P. 43–48. https://doi.org/10.1016/j.scriptamat.2020.05.019
  2. Liu Z.-Y., Liu Y., Xu Y., Zhang H., Shao Z., Wang Z., Chen H. Novel high-entropy oxides for energy storage and conversion: from fundamentals to practical applications // Green Energy Environ. 2023. V. 8. P. 1341–1357. https://doi.org/10.1016/j.gee.2023.04.007
  3. Yu Y., Liu S., Wang H., Zhang S., Wang N., Jiang W., Liu C., Ding W., Zhang Z., Dong C. // Design, synthesis and photocatalytic performance of A32Ti8Sn8Nb4Ta4Me8O96 (A = Ba, Sr; Me = Fe, Ga) perovskite structure high entropy oxides // J. Solid State Chem. 2023. V. 317. P. 123694. https://doi.org/10.1016/j.jssc.2022.123694
  4. Akrami S., Edalati P., Fuji M., Edalati K. High-entropy ceramics: review of principles, production and applications // Mater. Sci. Eng. Rep. 2021. V. 146. P. 100644. https://doi.org/10.1016/j.mser.2021.100644
  5. Edalati P., Wang Q., Razavi-Khosroshahi H., Fuji M., Ishihara T., Edalati K. Photocatalytic hydrogen evolution on a high-entropy oxide // J. Mater. Chem. A. Mater. Energy Sustain. 2020. V. 8. P. 3814–3821. https://doi.org/10.1039/c9ta12846h
  6. Akrami S., Murakami Y., Watanabe M., Ishihara T., Arita M., Fuji M., Edalati K. Defective high-entropy oxide photocatalyst with high activity for CO2 conversion // Appl. Catal. B: Environ. 2022. V. 303. P. 120896. https://doi.org/10.1016/j.apcatb.2021.120896
  7. Shannon R.D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751–767. https:// doi.org/10.1107/S0567739476001551
  8. Ramadass N. ABO3-type oxides. Their structure and properties. A bird’s eye view // Mater. Sci. Eng. 1978. V. 36. № 2. P. 231–239. https://doi.org/10.1016/0025-5416(78)90076-9
  9. Miracle D.B., Senkov O.N. A Critical review of high entropy alloys and related concepts // Acta Mater. 2017. V. 122. P. 448–511. https://doi.org/10.1016/j.actamat.2016.08.081
  10. Jiang S., Hu T., Gild J., Zhou N., Nie J., Qin M., Harrington T., Vecchio K., Luo J. A new class of high-entropy perovskite oxides // Scr. Mater. 2018. V. 142. P. 116–120. https://doi.org/10.1016/j.scriptamat.2017.08.040.
  11. Takani N, Yamane H. Structure analysis of CaTi1−xSnxO3 (x = 0.0–1.0) solid solutions // Powder Diffr. 2014. V. 29. № 3. P. 254–259. doi: 10.1017/S0885715614000074
  12. Wan D., Yan B., Chen J., Wu S., Hong J., Song D. at al. New family of plasmonic photocatalysts without noble metals // Chem. Mater. 2019. V. 31. № 7. P. 2320–2327. https://doi.org/10.1021/acs.chemmater.8b04185
  13. Gasperin M. CaTaO3: un nouveau composé du type perovskite // Acta Crystallogr. 1958. V. 11. P. 739. https://doi.org/10.1107/S0365110X58001961
  14. Okuma H., Katayama Y., Kadowaki F., Tokumoto Y., Ueno K. Large Rashba spin–orbit coupling in metallic SrTaO3 thin films // Appl. Phys. 2024. V. 17. P. 093001. https://doi.org/10.35848/1882-0786/ad7932
  15. Wang P., Chen P., Kostka A., Marschall R., Wark M. Control of phase coexistence in calcium tantalate composite photocatalysts for highly efficient hydrogen production // Chem. Mater. 2013. V. 25. № 23. P. 4739–4745. https://doi.org/10.1021/cm402708h
  16. Takeda Y., Naka S., Takano M., Shinjo T., Takada T., Shimada M. Preparation and characterization of stoichiometric CaFeO3 // Mater. Res. Bull. 1978. V. 13. № 1. P. 61–66. https://doi.org/10.1016/0025-5408(78)90028-4
  17. Abdel-Khalek E.K., Askar A.A., Motawea M.A., Aboelnasr M.A., El-Bahnasawy H.H. Study of the influence of synthesis method in BaFeO3−δ perovskite on structural, optical, magnetic and antibacterial properties // Phys. B: Condens. Matter. 2022. V. 628. P. 413573. https://doi.org/10.1016/j.physb.2021.413573
  18. Дедушенко С.К., Перфильев Ю.Д. Некоторые аспекты идентификации степени окисления железа по мессбауэровским изомерным сдвигам // Изв. РАН. Сер. физ. 2017. Т. 81. № 7. С. 877–881. https://doi.org/10.7868/S0367676517070067
  19. Gautam A., Das S., Ahmad Md. Band gap engineering through calcium addition in (Mg,Co,Ni,Cu,Zn)O high entropy oxide for efficient photocatalysis // Surf. Interfaces. 2024. V. 46. P. 104054. https://doi.org/10.1016/j.surfin.2024.104054

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).