Growth of Aluminum Molybdenum Oxide Films by Atomic Layer Deposition with Using Trimethylaluminum, Molybdenum Oxytetrachloride, and Water

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we report on the growth of aluminum molybdenum oxide (AlxMoyOz) films via atomic layer deposition (ALD) with the use of trimethylaluminum (TMA) (Al(CH3)3), molybdenum oxytetrachloride (MoOCl4), and water. The film growth process was studied in situ using a quartz crystal microbalance and ex situ using various X-ray techniques. AlxMoyOz ALD was performed using supercycles consisting of TMA/H2O and MoOCl4/H2O subcycles. We obtained two types of films, with the subcycles in the ratio 1 : 1 (1Al1MoO) and 1 : 7 (1Al7MoO). Film growth at 150°C was shown to be a linear process, with growth rate of 3.0 and 5.7 Å/supercycle for 1Al1MoO and 1Al7MoO, respectively. The density of the 1Al1MoO and 1Al7MoO films were 3.7 and 3.9 g/cm3, respectively, and their surface roughness did not exceed 20 Å. The oxidation state of the molybdenum in the films found to be 6+, 5+, and 4+. X-ray diffraction characterization showed that the films had an amorphous structure.

About the authors

A. M. Maksumova

Dagestan State University, 367000, Makhachkala, Dagestan, Russia

Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а

I. S. Bodalev

St. Petersburg State Institute of Technology, 190013, St. Petersburg, Russia

Email: ilmutdina@gmail.com
Россия, 190013, Санкт-Петербург, Московский пр., 24-26/49 лит. А

S. I. Suleimanov

Dagestan State University, 367000, Makhachkala, Dagestan, Russia

Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а

N. M.-R. Alikhanov

Dagestan State University, 367000, Makhachkala, Dagestan, Russia

Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а

I. M. Abdulagatov

Dagestan State University, 367000, Makhachkala, Dagestan, Russia

Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а

M. Kh. Rabadanov

Dagestan State University, 367000, Makhachkala, Dagestan, Russia

Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а

A. I. Abdulagatov

Dagestan State University, 367000, Makhachkala, Dagestan, Russia

Author for correspondence.
Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а

References

  1. Matsumoto Y., Shimanouchi R. Synthesis of Al2(MoO4)3 by Two Distinct Processes, Hydrothermal Reaction and Solid-State Reaction // Procedia Eng. 2016. V. 148. P. 158–162. https://doi.org/10.1016/j.proeng.2016.06.507
  2. Davis B.E., Strandwitz N.C. Aluminum Oxide Passivating Tunneling Interlayers for Molybdenum Oxide Hole-Selective Contacts // IEEE J. Photovolt. 2020. V. 10. № 3. P. 722–728. https://doi.org/10.1109/jphotov.2020.2973447
  3. Chowdhury S., Khokhar M.Q., Pham D.Ph., Yi J. Al2O3/MoOx Hole-Selective Passivating Contact for Silicon Heterojunction Solar Cell // ECS J. Solid State Sci. Technol. 2022. V. 11. № 1. P. 015004. https://doi.org/10.1149/2162-8777/ac4d83
  4. Харлампова Р.Н., Зайдман Н.М., Плясова Л.М., Мипова Л.П., Нагаева Л.А., Шкарин А.В. Дисперсность активного компонента в алюмомолибденовых катализаторах // Кинетика и катализ. 1973. Т. 14. № 6. С. 1538–1543.
  5. Haber J. The Role of Molybdenum in Catalysi. London: Climax Molybdenum Co, 1981. P. 479.
  6. Gasonoo A., Ahn H.-S., Jang E.-J., Kim M.-H., Gwag J.S., Lee J.-H., Choi Y. Fabrication of Multi-Layer Metal Oxides Structure for Colored Glass // Materials. 2021. V. 14. P. 2437. https://doi.org/10.3390/ma14092437
  7. Dondi M., Matteucci F., Baldi G., Barzanti A., Cruciani G., Zama I., Bianchi C.L. Gray–Blue Al2O3–MoOx Ceramic Pigments: Crystal Structure, Colouring Mechanism and Performance // Dyes Pigm. 2008. V. 76. № 1. P. 179–186. https://doi.org/10.1016/j.dyepig.2006.08.021
  8. Erdemir A. A Crystal-Chemical Approach to Lubrication by Solid Oxides // Tribol. Lett. 2000. V. 8. № 2–3. P. 97–102. https://doi.org/10.1023/A:1019183101329
  9. Erdemir A. A Crystal Chemical Approach to the Formulation of Self-Lubricating Nanocomposite Coatings // Surf. Coat. Technol. 2005. V. 200. № 5–6. P. 1792–1796. https://doi.org/10.1016/j.surfcoat.2005.08.054
  10. Vitale S.A., Hu W., D’Onofrio R., Soares T., Geis M.W. Interface State Reduction by Plasma-Enhanced ALD of Homogeneous Ternary Oxides // ACS Appl. Mater. Interfaces. 2020. V. 12. № 38. P. 43250–43256. https://doi.org/10.1021/acsami.0c11882
  11. Кольцов С.И., Алесковский В.Б. Некоторые закономерности реакций МН // Тез. докл. Науч.-техн. конф. ЛТИ им. Ленсовета. Ленинград. 1965. С. 67.
  12. Малыгин А.А. С.И. Кольцов – главный создатель метода молекулярного наслаивания // Сб. тез. докл. III Междунар. семинара “Атомно-слоевое осаждение: Россия, 2021”. Санкт-Петербург. 2021. С. 13–14.
  13. Mackus A.J.M., Schneider J.R., MacIsaac C., Baker J.G., Bent S.F. Synthesis of Doped, Ternary, and Quaternary Materials by Atomic Layer Deposition: A Review // Chem. Mater. 2019. V. 31. № 4. P. 1142–1183. https://doi.org/10.1021/acs.chemmater.8b02878
  14. Profijt H.B., Potts S.E., Van de Sanden M.C.M., Kessels W.M.M. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges // Vac. Sci. Technol. A. 2011. V. 29. № 5. P. 050801. https://doi.org/10.1116/1.3609974
  15. Ponraj J.S., Attolini G., Bosi M. Review on Atomic Layer Deposition and Applications of Oxide Thin Films // Crit. Rev. Solid State Mater. Sci. 2013. V. 38. № 3. P. 203–233. https://doi.org/10.1080/10408436.2012.736886
  16. Diskus M., Nilsen O., Fjellva H. Growth of Thin Films of Molybdenum Oxide by Atomic Layer Deposition // J. Mater. Chem. 2011. V. 21. P. 705–710. https://doi.org/10.1039/C0JM01099E
  17. Drake T.L., Stair P.C. Vapor Deposition of Molybdenum Oxide Using Bis(ethylbenzene) Molybdenum and Water // Vac. Sci. Technol. A. 2016. V. 34. P. 051403. https://doi.org/10.1116/1.4959532
  18. Jurca T., Peters A.W., Mouat A.R., Farha O.K., Hupp J.T., Lohr T.L., Delferro M., Marks T.J. Second-Generation Hexavalent Molybdenum Oxo-Amidinate Precursors for Atomic Layer Deposition // Dalton Trans. 2017. V. 46. P. 1172–1178. https://doi.org/10.1039/C6DT03952A
  19. Vos M.F.J., Macco B., Thissen N.F.W., Bol A.A., Kessels W.M.M. Atomic Layer Deposition of Molybdenum Oxide from (NtBu)2(NMe2)2Mo and O2 Plasma // Vac. Sci. Technol. A. 2016. V. 34. P. 01A103. https://doi.org/10.1116/1.4930161
  20. Mattinen M., King P.J., Khriachtcheva L., Heikkilä M.J., Fleming B., Rushworth S., Mizohatac K., Meinander K., Räisänen J., Ritala M., Leskelä M. Atomic Layer Deposition of Crystalline Molybdenum Oxide Thin Films and Phase Control by Post-Deposition Annealing // Mater. Today Chem. 2018. V. 9. P. 17–27. https://doi.org/10.1016/j.mtchem.2018.04.005
  21. Mouat A.R., Mane A.U., Elam J.W., Delferro M., Marks T.J., Stair P.C. Volatile Hexavalent Oxo-Amidinate Complexes: Molybdenum and Tungsten Precursors for Atomic Layer Deposition // Chem. Mater. 2016. V. 28. № 6. P. 1907–1919. https://doi.org/10.1021/acs.chemmater.6b00248
  22. Kvalvik J.N., Borgersen J., Hansen P.-A., Nilsen O. Area-Selective Atomic Layer Deposition of Molybdenum Oxide // Vac. Sci. Technol. A. 2020. V. 38. P. 042406. https://doi.org/10.1116/6.0000219#suppl
  23. Maksumova A.M., Abdulagatov I.M., Palchaev D.K., Rabadanov M.Kh., Abdulagatov A.I. Studying the Atomic Layer Deposition of Molybdenum Oxide and Titanium–Molybdenum Oxide Films Using Quartz Crystal Microbalance // Russ. J. Phys. Chem. A. 2022. V. 96. № 10. P. 2206–2214. https://doi.org/10.31857/S0044453722100181
  24. Haynes W.M. CRC Handbook of Chemistry and Physics. 95ed. Boca Raton: CRC, 2014. P. 4–77.
  25. Pershina V., Fricke B. Group 6 Oxychlorides MOCl4, where M = Mo, W, and Element 106 (Sg): Electronic Structure and Thermochemical Stability // Russ. J. Phys. Chem. 1995. V. 99. № 1. P. 144–147.
  26. Elam J.W., Groner M.D., George S.M. Viscous Flow Reactor with Quartz Crystal Microbalance for Thin Film Growth by Atomic Layer Deposition // Rev. Sci. Instrum. 2002. V. 73. № 8. P. 2981–2987. https://doi.org/10.1063/1.1490410
  27. Абдулагатов А.И., Максумова А.М., Палчаев Д.К., Рабаданов М.Х., Абдулагатов И.М. Атомно-слоевое осаждение и термические превращения алюминий-ванадиевых оксидных тонких пленок // ЖОХ. 2022. Т. 92. № 8. С. 1310–1324. https://doi.org/10.31857/S0044460X22080182
  28. Wind R.A., George S.M. Quartz Crystal Microbalance Studies of Al2O3 Atomic Layer Deposition Using Trimethylaluminum and Water at 125°C // J. Phys. Chem. A. 2010. V. 114. № 3. P. 1281–1289. https://doi.org/10.1021/jp9049268
  29. Максумова А.М., Абдулагатов И.М., Палчаев Д.К., Рабаданов М.Х., Абдулагатов А.И. Исследование процесса атомно-слоевого осаждения оксида молибдена и титан-молибденовых оксидных пленок методом кварцевого пьезоэлектрического микровзвешивания // ЖФХ. 2022. Т. 96. № 10. С. 1490–1498. https://doi.org/10.31857/S0044453722100181
  30. Groner M.D., Fabreguette F.H., Elam J.W., George S.M. Low-Temperature Al2O3 Atomic Layer Deposition // Chem. Mater. 2004. V. 16. № 4. P. 639–645. https://doi.org/10.1021/cm0304546
  31. Larsson F., Keller J., Primetzhofer D., Riekehr L., Edoff M., Törndahl T. Atomic Layer Deposition of Amorphous Tin-Gallium Oxide Films // J. Vac. Sci. Technol. A. 2019. V. 37. № 3. P. 030906. https://doi.org/10.1116/1.5092877
  32. Mackus A.J.M., Schneider J.R., MacIsaac C., Baker J.G., Bent S.F. Synthesis of Doped, Ternary, and Quaternary Materials by Atomic Layer Deposition: A Review // Chem. Mater. 2019. V. 31. № 4. P. 1142–1183. https://doi.org/10.1021/acs.chemmater.8b02878
  33. Myers T.J., Cano A.M., Lancaster D.K., Clancey J.W., George S.M. Conversion Reactions in Atomic Layer Processing with Emphasis on ZnO Conversion to Al2O3 by Trimethylaluminum // J. Vac. Sci. Technol. A. 2021. V. 39. № 2. P. 021001. https://doi.org/10.1116/6.0000680
  34. DuMont J.W., Marquardt A.E., Cano A.M., George S.M. Thermal Atomic Layer Etching of SiO2 by a “Conversion-Etch” Mechanism Using Sequential Reactions of Trimethylaluminum and Hydrogen Fluoride // ACS Appl. Mater. Interfaces. 2017. V. 9. № 11. P. 10296–10307. https://doi.org/10.1021/acsami.7b01259
  35. Coll M., Napari M. Atomic Layer Deposition of Functional Multicomponent Oxides // Apll. Mater. 2019. V. 7. № 11. P. 110901. https://doi.org/10.1063/1.5113656
  36. Абдулагатов А.И., Максумова А.М., Палчаев Д.К., Рабаданов М.Х., Абдулагатов И.М. Атомно-слоевое осаждение и термические превращения титан-ванадиевых оксидных тонких пленок // ЖПХ. 2021. Т. 94. № 7. С. 835–848. https://doi.org/10.1134/S1070427221070053
  37. Roessler B., Kleinhenz S., Seppelt K. Pentamethylmolybdenum // Chem. Commun. 2000. V. 12. P. 1039–1040. https://doi.org/10.1039/B000987N
  38. Plyuto Yu.V., Babich I.V., Plyuto I.V., Van Langeveld A.D., Moulijn J.A. XPS Studies of MoO3/Al2O3 and MoO3/SiO2 Systems // Appl. Surf. Sci. 1997. V. 119. № 1–2. P. 11–18.
  39. Clayton C.R., Lu Y.C. Electrochemical and XPS Evidence of the Aqueous Formation of Mo2O5 // Surf. Interface. 1989. V. 14. № 1–2. P. 66–70.
  40. Choi J.G., Thompson L.T. XPS Study of As-Prepared and Reduced Molybdenum Oxides // Appl. Surf. Sci. 1996. V. 93. № 2. P. 143–149. https://doi.org/10.1063/1.370690
  41. Baltrusaitis J., Mendoza-Sanchez B., Fernandez V., Veenstra R., Dukstiene N., Roberts A., Fairley N. Generalized Molybdenum Oxide Surface Chemical State XPS Determination via Informed Amorphous Sample Model // Appl. Surf. Sci. 2015. V. 326. P. 151–161. https://doi.org/10.1016/j.apsusc.2014.11.077
  42. NIST Standard Reference Database.
  43. Bellenger F., Houssa M., Delabie A., Afanasiev V., Conard T., Caymax M., Meuris M., Meyer K.De., Heyns M.M. Passivation of Ge(100)/GeO2/high-k Gate Stacks Using Thermal Oxide Treatments // J. Electrochem. Soc. 2008. V. 155. № 2. P. G33–G38. https://doi.org/10.1149/1.2819626
  44. Abdulagatov A.I., Sharma V., Murdzek J.A., Cavanagh A.S., George S.M. Thermal Atomic Layer Etching of Germanium-Rich SiGe Using an Oxidation and “Conversion-Etch” Mechanism // J. Vac. Sci. Technol. A. 2021. V. 39. № 2. P. 022602. https://doi.org/10.1116/6.0000834

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (132KB)
3.

Download (59KB)
4.

Download (86KB)
5.

Download (57KB)
6.

Download (66KB)
7.

Download (99KB)
8.

Download (321KB)
9.

Download (38KB)

Copyright (c) 2023 А.М. Максумова, И.С. Бодалёв, С.И. Сулейманов, Н.М.-Р. Алиханов, И.М. Абдулагатов, М.Х. Рабаданов, А.И. Абдулагатов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».