Атомно-слоевое осаждение алюминий-молибденовых оксидных пленок с использованием триметилалюминия, оксотетрахлорида молибдена и воды

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

В работе продемонстрировано атомно-слоевое осаждение (АСО) алюминий-молибденовых оксидных пленок (AlxMoyOz) с использованием триметилалюминия (ТМА, Al(CH3)3), оксотетрахлорида молибдена (MoOCl4) и воды. Исследование процесса роста пленок осуществляли in situ с использованием кварцевых пьезоэлектрических микровесов и ex situ рентгеновскими методами анализа тонких пленок. АСО AlxMoyOz проводили с использованием суперциклов, состоящих из субциклов ТМА/H2O и MoOCl4/H2O. В работе получены два типа пленок, где соотношение субциклов составляло 1 : 1 (1Al1MoO) и 1 : 7 (1Al7MoO). При 150°C показана линейность роста пленок с постоянной роста 3.0 и 5.7 Å/суперцикл для 1Al1MoO и 1Al7MoO соответственно. Плотность полученных пленок составила 3.6 и 3.9 г/см3 для 1Al1MoO и 1Al7MoO соответственно, а шероховатость была в пределах 20 Å. Степень окисления молибдена в полученных пленках составляла 6+, 5+ и 4+. Рентгендифракционный анализ показал, что полученные пленки имели аморфную структуру.

Sobre autores

А. Максумова

Дагестанский государственный университет

Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а

И. Бодалёв

Санкт-Петербургский государственный технологический институт

Email: ilmutdina@gmail.com
Россия, 190013, Санкт-Петербург, Московский пр., 24-26/49 лит. А

С. Сулейманов

Дагестанский государственный университет

Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а

Н. Алиханов

Дагестанский государственный университет

Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а

И. Абдулагатов

Дагестанский государственный университет

Autor responsável pela correspondência
Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а

М. Рабаданов

Дагестанский государственный университет

Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а

А. Абдулагатов

Дагестанский государственный университет

Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а

Bibliografia

  1. Matsumoto Y., Shimanouchi R. Synthesis of Al2(MoO4)3 by Two Distinct Processes, Hydrothermal Reaction and Solid-State Reaction // Procedia Eng. 2016. V. 148. P. 158–162. https://doi.org/10.1016/j.proeng.2016.06.507
  2. Davis B.E., Strandwitz N.C. Aluminum Oxide Passivating Tunneling Interlayers for Molybdenum Oxide Hole-Selective Contacts // IEEE J. Photovolt. 2020. V. 10. № 3. P. 722–728. https://doi.org/10.1109/jphotov.2020.2973447
  3. Chowdhury S., Khokhar M.Q., Pham D.Ph., Yi J. Al2O3/MoOx Hole-Selective Passivating Contact for Silicon Heterojunction Solar Cell // ECS J. Solid State Sci. Technol. 2022. V. 11. № 1. P. 015004. https://doi.org/10.1149/2162-8777/ac4d83
  4. Харлампова Р.Н., Зайдман Н.М., Плясова Л.М., Мипова Л.П., Нагаева Л.А., Шкарин А.В. Дисперсность активного компонента в алюмомолибденовых катализаторах // Кинетика и катализ. 1973. Т. 14. № 6. С. 1538–1543.
  5. Haber J. The Role of Molybdenum in Catalysi. London: Climax Molybdenum Co, 1981. P. 479.
  6. Gasonoo A., Ahn H.-S., Jang E.-J., Kim M.-H., Gwag J.S., Lee J.-H., Choi Y. Fabrication of Multi-Layer Metal Oxides Structure for Colored Glass // Materials. 2021. V. 14. P. 2437. https://doi.org/10.3390/ma14092437
  7. Dondi M., Matteucci F., Baldi G., Barzanti A., Cruciani G., Zama I., Bianchi C.L. Gray–Blue Al2O3–MoOx Ceramic Pigments: Crystal Structure, Colouring Mechanism and Performance // Dyes Pigm. 2008. V. 76. № 1. P. 179–186. https://doi.org/10.1016/j.dyepig.2006.08.021
  8. Erdemir A. A Crystal-Chemical Approach to Lubrication by Solid Oxides // Tribol. Lett. 2000. V. 8. № 2–3. P. 97–102. https://doi.org/10.1023/A:1019183101329
  9. Erdemir A. A Crystal Chemical Approach to the Formulation of Self-Lubricating Nanocomposite Coatings // Surf. Coat. Technol. 2005. V. 200. № 5–6. P. 1792–1796. https://doi.org/10.1016/j.surfcoat.2005.08.054
  10. Vitale S.A., Hu W., D’Onofrio R., Soares T., Geis M.W. Interface State Reduction by Plasma-Enhanced ALD of Homogeneous Ternary Oxides // ACS Appl. Mater. Interfaces. 2020. V. 12. № 38. P. 43250–43256. https://doi.org/10.1021/acsami.0c11882
  11. Кольцов С.И., Алесковский В.Б. Некоторые закономерности реакций МН // Тез. докл. Науч.-техн. конф. ЛТИ им. Ленсовета. Ленинград. 1965. С. 67.
  12. Малыгин А.А. С.И. Кольцов – главный создатель метода молекулярного наслаивания // Сб. тез. докл. III Междунар. семинара “Атомно-слоевое осаждение: Россия, 2021”. Санкт-Петербург. 2021. С. 13–14.
  13. Mackus A.J.M., Schneider J.R., MacIsaac C., Baker J.G., Bent S.F. Synthesis of Doped, Ternary, and Quaternary Materials by Atomic Layer Deposition: A Review // Chem. Mater. 2019. V. 31. № 4. P. 1142–1183. https://doi.org/10.1021/acs.chemmater.8b02878
  14. Profijt H.B., Potts S.E., Van de Sanden M.C.M., Kessels W.M.M. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges // Vac. Sci. Technol. A. 2011. V. 29. № 5. P. 050801. https://doi.org/10.1116/1.3609974
  15. Ponraj J.S., Attolini G., Bosi M. Review on Atomic Layer Deposition and Applications of Oxide Thin Films // Crit. Rev. Solid State Mater. Sci. 2013. V. 38. № 3. P. 203–233. https://doi.org/10.1080/10408436.2012.736886
  16. Diskus M., Nilsen O., Fjellva H. Growth of Thin Films of Molybdenum Oxide by Atomic Layer Deposition // J. Mater. Chem. 2011. V. 21. P. 705–710. https://doi.org/10.1039/C0JM01099E
  17. Drake T.L., Stair P.C. Vapor Deposition of Molybdenum Oxide Using Bis(ethylbenzene) Molybdenum and Water // Vac. Sci. Technol. A. 2016. V. 34. P. 051403. https://doi.org/10.1116/1.4959532
  18. Jurca T., Peters A.W., Mouat A.R., Farha O.K., Hupp J.T., Lohr T.L., Delferro M., Marks T.J. Second-Generation Hexavalent Molybdenum Oxo-Amidinate Precursors for Atomic Layer Deposition // Dalton Trans. 2017. V. 46. P. 1172–1178. https://doi.org/10.1039/C6DT03952A
  19. Vos M.F.J., Macco B., Thissen N.F.W., Bol A.A., Kessels W.M.M. Atomic Layer Deposition of Molybdenum Oxide from (NtBu)2(NMe2)2Mo and O2 Plasma // Vac. Sci. Technol. A. 2016. V. 34. P. 01A103. https://doi.org/10.1116/1.4930161
  20. Mattinen M., King P.J., Khriachtcheva L., Heikkilä M.J., Fleming B., Rushworth S., Mizohatac K., Meinander K., Räisänen J., Ritala M., Leskelä M. Atomic Layer Deposition of Crystalline Molybdenum Oxide Thin Films and Phase Control by Post-Deposition Annealing // Mater. Today Chem. 2018. V. 9. P. 17–27. https://doi.org/10.1016/j.mtchem.2018.04.005
  21. Mouat A.R., Mane A.U., Elam J.W., Delferro M., Marks T.J., Stair P.C. Volatile Hexavalent Oxo-Amidinate Complexes: Molybdenum and Tungsten Precursors for Atomic Layer Deposition // Chem. Mater. 2016. V. 28. № 6. P. 1907–1919. https://doi.org/10.1021/acs.chemmater.6b00248
  22. Kvalvik J.N., Borgersen J., Hansen P.-A., Nilsen O. Area-Selective Atomic Layer Deposition of Molybdenum Oxide // Vac. Sci. Technol. A. 2020. V. 38. P. 042406. https://doi.org/10.1116/6.0000219#suppl
  23. Maksumova A.M., Abdulagatov I.M., Palchaev D.K., Rabadanov M.Kh., Abdulagatov A.I. Studying the Atomic Layer Deposition of Molybdenum Oxide and Titanium–Molybdenum Oxide Films Using Quartz Crystal Microbalance // Russ. J. Phys. Chem. A. 2022. V. 96. № 10. P. 2206–2214. https://doi.org/10.31857/S0044453722100181
  24. Haynes W.M. CRC Handbook of Chemistry and Physics. 95ed. Boca Raton: CRC, 2014. P. 4–77.
  25. Pershina V., Fricke B. Group 6 Oxychlorides MOCl4, where M = Mo, W, and Element 106 (Sg): Electronic Structure and Thermochemical Stability // Russ. J. Phys. Chem. 1995. V. 99. № 1. P. 144–147.
  26. Elam J.W., Groner M.D., George S.M. Viscous Flow Reactor with Quartz Crystal Microbalance for Thin Film Growth by Atomic Layer Deposition // Rev. Sci. Instrum. 2002. V. 73. № 8. P. 2981–2987. https://doi.org/10.1063/1.1490410
  27. Абдулагатов А.И., Максумова А.М., Палчаев Д.К., Рабаданов М.Х., Абдулагатов И.М. Атомно-слоевое осаждение и термические превращения алюминий-ванадиевых оксидных тонких пленок // ЖОХ. 2022. Т. 92. № 8. С. 1310–1324. https://doi.org/10.31857/S0044460X22080182
  28. Wind R.A., George S.M. Quartz Crystal Microbalance Studies of Al2O3 Atomic Layer Deposition Using Trimethylaluminum and Water at 125°C // J. Phys. Chem. A. 2010. V. 114. № 3. P. 1281–1289. https://doi.org/10.1021/jp9049268
  29. Максумова А.М., Абдулагатов И.М., Палчаев Д.К., Рабаданов М.Х., Абдулагатов А.И. Исследование процесса атомно-слоевого осаждения оксида молибдена и титан-молибденовых оксидных пленок методом кварцевого пьезоэлектрического микровзвешивания // ЖФХ. 2022. Т. 96. № 10. С. 1490–1498. https://doi.org/10.31857/S0044453722100181
  30. Groner M.D., Fabreguette F.H., Elam J.W., George S.M. Low-Temperature Al2O3 Atomic Layer Deposition // Chem. Mater. 2004. V. 16. № 4. P. 639–645. https://doi.org/10.1021/cm0304546
  31. Larsson F., Keller J., Primetzhofer D., Riekehr L., Edoff M., Törndahl T. Atomic Layer Deposition of Amorphous Tin-Gallium Oxide Films // J. Vac. Sci. Technol. A. 2019. V. 37. № 3. P. 030906. https://doi.org/10.1116/1.5092877
  32. Mackus A.J.M., Schneider J.R., MacIsaac C., Baker J.G., Bent S.F. Synthesis of Doped, Ternary, and Quaternary Materials by Atomic Layer Deposition: A Review // Chem. Mater. 2019. V. 31. № 4. P. 1142–1183. https://doi.org/10.1021/acs.chemmater.8b02878
  33. Myers T.J., Cano A.M., Lancaster D.K., Clancey J.W., George S.M. Conversion Reactions in Atomic Layer Processing with Emphasis on ZnO Conversion to Al2O3 by Trimethylaluminum // J. Vac. Sci. Technol. A. 2021. V. 39. № 2. P. 021001. https://doi.org/10.1116/6.0000680
  34. DuMont J.W., Marquardt A.E., Cano A.M., George S.M. Thermal Atomic Layer Etching of SiO2 by a “Conversion-Etch” Mechanism Using Sequential Reactions of Trimethylaluminum and Hydrogen Fluoride // ACS Appl. Mater. Interfaces. 2017. V. 9. № 11. P. 10296–10307. https://doi.org/10.1021/acsami.7b01259
  35. Coll M., Napari M. Atomic Layer Deposition of Functional Multicomponent Oxides // Apll. Mater. 2019. V. 7. № 11. P. 110901. https://doi.org/10.1063/1.5113656
  36. Абдулагатов А.И., Максумова А.М., Палчаев Д.К., Рабаданов М.Х., Абдулагатов И.М. Атомно-слоевое осаждение и термические превращения титан-ванадиевых оксидных тонких пленок // ЖПХ. 2021. Т. 94. № 7. С. 835–848. https://doi.org/10.1134/S1070427221070053
  37. Roessler B., Kleinhenz S., Seppelt K. Pentamethylmolybdenum // Chem. Commun. 2000. V. 12. P. 1039–1040. https://doi.org/10.1039/B000987N
  38. Plyuto Yu.V., Babich I.V., Plyuto I.V., Van Langeveld A.D., Moulijn J.A. XPS Studies of MoO3/Al2O3 and MoO3/SiO2 Systems // Appl. Surf. Sci. 1997. V. 119. № 1–2. P. 11–18.
  39. Clayton C.R., Lu Y.C. Electrochemical and XPS Evidence of the Aqueous Formation of Mo2O5 // Surf. Interface. 1989. V. 14. № 1–2. P. 66–70.
  40. Choi J.G., Thompson L.T. XPS Study of As-Prepared and Reduced Molybdenum Oxides // Appl. Surf. Sci. 1996. V. 93. № 2. P. 143–149. https://doi.org/10.1063/1.370690
  41. Baltrusaitis J., Mendoza-Sanchez B., Fernandez V., Veenstra R., Dukstiene N., Roberts A., Fairley N. Generalized Molybdenum Oxide Surface Chemical State XPS Determination via Informed Amorphous Sample Model // Appl. Surf. Sci. 2015. V. 326. P. 151–161. https://doi.org/10.1016/j.apsusc.2014.11.077
  42. NIST Standard Reference Database.
  43. Bellenger F., Houssa M., Delabie A., Afanasiev V., Conard T., Caymax M., Meuris M., Meyer K.De., Heyns M.M. Passivation of Ge(100)/GeO2/high-k Gate Stacks Using Thermal Oxide Treatments // J. Electrochem. Soc. 2008. V. 155. № 2. P. G33–G38. https://doi.org/10.1149/1.2819626
  44. Abdulagatov A.I., Sharma V., Murdzek J.A., Cavanagh A.S., George S.M. Thermal Atomic Layer Etching of Germanium-Rich SiGe Using an Oxidation and “Conversion-Etch” Mechanism // J. Vac. Sci. Technol. A. 2021. V. 39. № 2. P. 022602. https://doi.org/10.1116/6.0000834

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (132KB)
3.

Baixar (59KB)
4.

Baixar (86KB)
5.

Baixar (57KB)
6.

Baixar (66KB)
7.

Baixar (99KB)
8.

Baixar (321KB)
9.

Baixar (38KB)

Declaração de direitos autorais © А.М. Максумова, И.С. Бодалёв, С.И. Сулейманов, Н.М.-Р. Алиханов, И.М. Абдулагатов, М.Х. Рабаданов, А.И. Абдулагатов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies