MODERN METHODS FOR DETERMINING THE CONTENT OF MOBILE PHOSPHORUS IN SOILS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

There are more than 20 methods for determining available phosphorus in soil in the world. One of the most difficult methodological tasks is to select a solution for soil extracts that would extract only plant-available phosphates from the soil and would not transfer low- and inaccessible phosphorus compounds into the solution. All chemical methods used usually include soil extraction with solutions of different pH, a certain soil : solution ratio, and different interaction times. In Europe alone, there are more than a dozen different methods used as standard methods for determining available phosphorus in soils. In Germany and Austria, the lactate method (CAL) is widely used for routine soil analysis, while in the USA, Canada, and the Czech Republic, the Mehlich method is used for acidic and neutral soils. It uses a multi-element extractant (a mixture of 0.2 M CH3COOH, 0.25 M NH4NO3, 0.015 M NH4F, 0.013 M HNO3, 0.001 M EDTA), which allows for the simultaneous extraction of P, K, Ca, Mg, Na, Cu, Zn, Mn and Fe. In European countries, the Olsen method is generally accepted for carbonate soils. It is based on the extraction of available soil phosphates with a 0.5 M NaHCO3 solution with a pH of 8.5. In Russia, the following standardized methods are used to determine available phosphorus: for sod-podzolic and gray forest soils – the method of Kirsanov (0.2 M HCl, with a soil: solution ratio of 1 : 5), for non-carbonate chernozems – the method of Chirikov (0.5 M CH3COOH, 1 : 25), for carbonate soils – the method of Machigin (1% (NH4)2CO3, 1 : 20). In some countries, for example in Brazil, anion exchange membranes have begun to be used. In general, the availability of phosphorus for plants is mainly determined by three indicators: 1 – the concentration of P2O5 in the soil solution (the “intensity” factor), determined in low-salt extracts (the method of Karpinsky–Zamyatina, Skofield), 2 – the amount of P2O5 in the solid phase of the soil, which can be easily accessed by plants (the “capacity” factor), methods of Kirsanov, Chirikov, Machigin, Olsen, Mehlich, and others, 3 – the ability of the soil to maintain the concentration of P2O5 in the soil solution at a sufficiently high level for a long time (buffer capacity of phosphorus, PBC). The most promising methods are those based on the use of anion exchange membranes, in which, due to the sorption of phosphorus from the solution by anionites, further desorption and the entry of P2O5 from the soil occurs, which allows the most complete imitation of the absorption of phosphorus by the root systems of plants and the most complete convergence of the results of the methods with the efficiency of phosphorus fertilizers and the yield of agricultural crops. This will allow the rational use of phosphorus fertilizers due to the limited reserves of phosphate raw materials.

About the authors

A. N. Naliukhin

Russian State Agrarian University – K.A. Timiryazev Moscow Agricultural Academy; D.N. Pryanishnikov All-Russian Research Institute of Agrochemistry

Email: naliuhin@yandex.ru
Moscow, Russia; Moscow, Russia

S. B. Vinogradova

D.N. Pryanishnikov All-Russian Research Institute of Agrochemistry

Moscow, Russia

References

  1. Кулаковская Т.Н. Оптимизация агрохимической системы почвенного питания растений. М., 1990. 218 с.
  2. Кирпичников Н.А., Мергель С.В., Черных И.Н., Черных H.A. К вопросу об оптимизации фосфатного режима дерново-подзолистых тяжелосуглинистых почв // Агрохимия. 1993. № 8. С. 12–20.
  3. Прянишников Д.Н. Агрохимия. 3-е изд., перераб. и доп. М.: Сельхозгиз, 1940. С. 606.
  4. Чумаченко И.Н., Сушеница Б.А., Алиев Ш.А., Капранов В.Н., Дышко В.Н., Прудников П.В. Закономерности формирования фосфатного фонда почв при применении биогенных веществ в составе нетрадиционного минерального сырья и продуктивность их использования // Бюл. ВНИИА. 2003. № 117. С. 134–136.
  5. Zheng Z.M., Zhang T.Q. Soil phosphorus tests and transformation analysis to quantify plant availability: a review, soil fertility improvement and integrated nutrient management – A Global perspective / Ed. Dr. Joann Whalen. 2012. P. 2–36.
  6. Holford J.C.R. Soil phosphorus: its measurement, and its uptake by plants // Aust. J. Soil Res. 1997. V. 35. P. 227–239.
  7. Hedley M.J., Stewart J.W.B., Chauhan B.S. Changes in inorganic soil phosphorus fractions induced by cultivation practices and by laboratory incubations // Soil Sci. Soc. Amer. J. 1982. V. 46. P. 970–976.
  8. Abdu N. Soil-phosphorus extraction methodologies: A review // Afric. J. Agricult. Res. 2006. V. 1. P. 159–161.
  9. Mallarino A.P. Interpretation of soil phosphorus tests for corn in soils with varying pH and calcium carbonate content // J. Prod. Agric. 1997. V. 10. P. 163–167.
  10. Wuenscher R., Unterfrauner H., Peticzka R., Zehetner F. A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe // Plant Soil Environ. 2015. V. 61. № 2. Р. 86–96. doi: 10.17221/932/2014-PSE
  11. Schüller H. Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphors im Boden // Zeitschrift für Pflanzenernährung und Bodenkunde. 1969. V. 123. P. 48–63.
  12. Mehlich A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant // Commun. Soil Sci. Plant Anal. 1984. V. 15. P. 1409–1416.
  13. Sims J.T. Soil test phosphorus: Mehlich 3 // Methods of phosphorus analysis for soils, sediments, residuals, and waters / Ed. Pierzynski G. Raleigh: North Carolina State University, 2000. Р. 17–19.
  14. Ziadi N., Sen Tran T. Mehlich 3-extractable elements // Soil sampling and methods of analysis / Eds. Carter M.R., Gregorich E.G. Boca Raton: Canadian Society of Soil Science, Lewis Publishers, 2007. Р. 81–88.
  15. Olsen S.R., Cole C.V., Watanabe F.S., Dean L.A. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington: USDA Circular 939, U.S. Government Printing Office, 1954. Р. 1–19.
  16. Bissani C.A., Tedesco M.J., de Camargo F.A.O., Miola G.L., Gianello C. Anion-exchange resins and iron oxideimpregnated filter paper as plant available phosphorus indicators in soils // Commun. Soil Sci. Plant Anal. 2002. V. 33. P. 1119–1130.
  17. Myers R.G., Sharpley A.N., Thien S.J., Pierzynski G.M. Ion-sink phosphorus extraction methods applied on 24 soils from the continental USA // Soil Sci. Soc. Amer. J. 2005. V. 69. P. 511–521.
  18. Nuernberg N.J., Leal J.E., Sumner M.E. Evaluation of an anion-exchange membrane for extracting plant available phosphorus in soils // Commun. Soil Sci. Plant Anal. 1988. V. 29. P. 467–479.
  19. Kuo S. Phosphorus // Methods of Soil Analysis. 3. Chemical Methods / Eds. Bartels J.M., Bigham J.M. Madison: Soil Science Society of America, 1996. P. 869–919.
  20. Адрианов С.Н. Оценка методов определения подвижных фосфатов в почве // Плодородие. 2008. № 2. С. 14–17.
  21. Пискунов А.С. Методы агрохимических исследований. М.: КолосС., 2004. 312 с.
  22. Касицкий Ю.И. Об оптимальном содержании подвижного фосфора в почвах Нечерноземной зоны СССР // Агрохимия. 1991. № 6. С. 107–125.
  23. Кирпичников Н.А. Влияние извести на фосфатный режим слабоокультуренной дерново-подзолистой почвы при длительном применении удобрений // Агрохимия. 2016. № 12. С. 3–8.
  24. Тихомирова В.Я., Сорокина О.Ю. Лен-долгунец. Биологические особенности. Управление формированием урожая и его качества: научн. изд-е. Тверь: Твер. гос. ун-т, 2011. 159 с.
  25. Налиухин А.Н., Шафран С.А. Окупаемость фосфорных удобрений прибавкой урожая льна-долгунца на дерново-подзолистых почвах // Плодородие. 2014. № 3. С. 2–4.
  26. Налиухин А.Н., Кирпичников Н.А., Бижан С.П., Гусева Ю.Е. Эффективность фосфорных удобрений: результаты исследований в длительных полевых опытах России, Великобритании и Китае // Агрохимия. 2024. № 12. С. 89–100. doi: 10.31857/S0002188124120128
  27. Шафран С.А., Кирпичников Н.А. Научные основы прогнозирования содержания подвижных форм фосфора и калия в почвах // Агрохимия. 2019. № 4. С. 3–10. doi: 10.1134/S0002188119040112
  28. Ельников И.И., Пивоварова И.А. О варьировании относительного оптимума содержания подвижного фосфора в почве в условиях Нечерноземной зоны // Агрохимия. 1985. № 2. С. 113–124.
  29. Воронкова Н.А., Балабанова Н.Ф., Волкова В.А., Цыганова Н.А. Агрохимическая оценка фосфатного режима агроценоза с лугово-черноземной почвой // Тавр. вестн. аграрн. науки. 2023. № 2(34). С. 6–15.
  30. Аверкина С.С. Региональные особенности и оценка методов определения подвижных фосфатов в почвах Новосибирской области // Вестн. НГАУ. 2019. № 3(52). C. 7–16.
  31. Zehetner F., Wenzel W.W. Nickel and copper sorption in acid forest soils // Soil Sci. 2000. V. 165. P. 463–472.
  32. Houba V.J.G., Temminghoff E.J.M., Gaikhorst G.A., van Vark W. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent // Commun. Soil Sci. Plant Anal. 2000. V. 31. P. 1299–1396.
  33. Husz G. Lithium chloride solution as an extracting agent for soils // J. Plant Nutr. Soil Sci. 2001. V. 164. P. 71–75.
  34. Saggar S., Hedley M.J., White R.E., Perrott K.W., Gregg P.E.H., Cornforth I.S., Sinclair A.G. Development and evaluation of an improved soil test for phosphorus 3: Field comparison of Olsen, Colwell and resin soil P tests for New Zealand pasture soils // Nutr. Cycl. Agroecosyst. 1999. V. 55. P. 35–50.
  35. Holford I.C.R. Evaluation of soil phosphate buffering indexes // Austral. J. Soil Res. 1979. V. 17(3). P. 495–504.
  36. Sánchez-Alcalá I., Campillo M.C., Torrent J. Extraction with 0.01 M CaCl2 underestimates the concentration of phosphorus in the soil solution // Soil Use Manag. 2000. V. 30(2). P. 297–302. doi: 10.1111/sum.12116
  37. Sinclair A., Crooks B., Edwards T., Coull M. Managing soil phosphorus. Technical Note TN 668, Available at FAS (Farm Advisory Servixe), 2015. URL: https://www.fas.scot/downloads/managing-soil-phosphorus
  38. Налиухин А.Н., Демидов Д.В. Мировые запасы фосфатных руд и научно обоснованная потребность в фосфорных удобрениях в России // Плодородие. 2024. № 2(137). С. 46–50. doi: 10.25680/S19948603.2024.137.12

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).