EFFECT OF STIMULATING BACTERIA ON THE GROWTH AND YIELD OF BREAD WHEAT AT HIGH SOIL MOISTURE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Rhizospheric bacteria help plants overcome the stress of drought and waterlogging of the soil, and they are used in crop production to increase crop yields. However, it has not been sufficiently studied whether a single bacterial strain can be equally effective in drought and waterlogging of the soil. The reaction of wheat (Triticum aestivum L.) to treatment with 6 strains of bacteria during waterlogging was evaluated in laboratory and field experiments (“Baymakskoye” Agricultural Research Institute of the Russian Academy of Sciences) and the data were compared with previously published results of a similar experiment in arid conditions. Excessive watering reduced the height, weight of plants, and the total amount of chlorophylls, and the use of bacteria fully or partially normalized these indicators. The most successful treatment was with Pseudomonas mosselii strain 5(3), which was previously inferior to P. protegens DA1.2 and P. chlororaphis IB-6 strains against the background of drought. In the extremely rainy field season of 2024, plant weight in the tillering phase and wheat yield increased both in plots with strain 5(3) (up to 24.6 and 20.7%) and strain DA1.2 (up to 50.7 and 20.0%) due to an increase in the number of productive stems and grain weight in each ear. Thus, during waterlogging and drought, different types of bacteria provided an advantage, but the dynamism of weather conditions in the field could smooth out the differences observed in controlled laboratory conditions.

About the authors

S. P. Chetverikov

Ufa Institute of Biology – Subdivision of the Ufa Federal Research Center of the RAS; Bashkir Research Institute of Agriculture of the Ufa Federal Research Centre of the RAS

Ufa, Russia; Ufa, Russia

M. D. Bakaeva

Ufa Institute of Biology – Subdivision of the Ufa Federal Research Center of the RAS

Email: chelab007@yandex.ru
Ufa, Russia

T. V. Rameev

Ufa Institute of Biology – Subdivision of the Ufa Federal Research Center of the RAS

Ufa, Russia

Z. R. Sultangazin

Bashkir Research Institute of Agriculture of the Ufa Federal Research Centre of the RAS

Ufa, Russia

A. V. Feoktistova

Ufa Institute of Biology – Subdivision of the Ufa Federal Research Center of the RAS

Ufa, Russia

M. D. Timergalin

Ufa Institute of Biology – Subdivision of the Ufa Federal Research Center of the RAS

Ufa, Russia

References

  1. Третий оценочный доклад об изменениях климата и их последствиях на территории Российской Федерации. Общее резюме. СПб.: Наукоемкие технологии, 2022. 124 с.
  2. Чайковская Л.А., Овсиенко О.Л. Фосфатмобилизующие микроорганизмы: 1. Биоразнообразие, влияние на минеральное питание растений и их продуктивность // Тавр. вестн. аграрн. науки. 2021. Т. 28. № 4. С. 159–182.
  3. Сидорова Т.М., Аллахвердян В.В., Асатурова А.М. Роль бактерий рода Pseudomonas и их метаболитов в биоконтроле фитопатогенных микроорганизмов // Агрохимия. 2023. № 5. С. 83–93.
  4. Egamberdieva D., Wirth S. J., Alqarawi A. A., Abd-Allah E. F., Hashem A. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness // Front. Microbiol. 2017. № 8. Art. 2104.
  5. Архипова Т.Н., Мартыненко Е.В., Шарипова Г.В., Кузьмина Л.Ю., Кудоярова Г.Р. Сравнение влияния ауксинпродуцирующих и цитокининпродуцирующих бактерий на рост, водный обмен и степень повреждения растений пшеницы от оксидативного стресса при засолении // Биомика. 2019. Т. 11. № 4. С. 409–417.
  6. Fukami J., Ollero F.J., Megías M., Hungria M. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth // AMB express. 2017. V. 7. Art. 153.
  7. Zhao X., Yuan X., Xing Y., Dao J., Zhao D., Li Y., Li W., Wang Z. A meta‐analysis on morphological, physiological and biochemical responses of plants with PGPR inoculation under drought stress // Plant Cell Environ. 2023. V. 46. № 1. P. 199–214.
  8. Rauf M., Awais M., Ud-Din A., Ali K., Gul H., Rahman M.M., Hamayun M., Arif M. Molecular mechanisms of the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing Trichoderma asperellum MAP1 in enhancing wheat tolerance to waterlogging stress // Front. Plant Sci. 2021. V. 11. Art. 614971.
  9. Senko H., Kajić S., Huđ A., Palijan G., Petek M., Rajnović I., Šamec D., Udiković-Kolić N., Mešić A., Brkljačić L., Petrić I. Will the beneficial properties of plant-growth promoting bacteria be affected by waterlogging predicted in the wake of climate change: A model study // Appl. Soil Ecol. 2024. V. 198. Art. 105379.
  10. Тимергалин М.Д., Феоктистова А.В., Рамеев Т.В., Бакаева М.Д., Стариков С.Н., Султангазин З.Р., Четвериков С.П. Влияние ризосферных бактерий, способных к биосинтезу и/или деструкции фитогормонов, на ростовые характеристики и гормональный статус растений пшеницы в условиях дефицита воды // Агрохимия. 2024. № 9. С. 51–57.
  11. Методики агрономических исследований: учеб.-метод. пособие / Сост. А. М. Ленточкин. Ижевск: Ижевская ГСХА, 2018. 172 с.
  12. Zhang P., Lyu D., Jia L., He J., Qin S. Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging // BMC Genomics. 2017. V. 18. Art. 649.
  13. Pan J., Sharif R., Xu X., Chen X. Mechanisms of waterlogging tolerance in plants: Research progress and prospects // Front. Plant Sci. 2021. V. 11. Art. 627331.
  14. Shomali A., Das S., Arif N., Sarraf M., Zahra N., Yadav V., Aliniaeifard S., Chauhan D.K., Hasanuzzaman M. Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance // Plants. 2022. V. 11. № 22. Art. 3158.
  15. Komatsu S., Han C., Nanjo Y., Altaf-Un-Nahar M., Wang K., He D., Yang P. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding // J. Proteome Res. 2013. V. 12. № 11. P. 4769–4784.
  16. Saha I., Hasanuzzaman M., Dolui D., Sikdar D., Debnath S.C., Adak M.K. Silver-nanoparticle and abscisic acid modulate sub1A quantitative trait loci functioning towards submergence tolerance in rice (Oryza sativa L.) // Environ. Exp. Bot. 2021. V. 181. Art. 1042276.
  17. Malik A.I., Colmer T.D., Lambers H., Setter T.L., Schortemeyer M. Short‐term waterlogging has long‐term effects on the growth and physiology of wheat // New Phytologist. 2002. V. 153. № 2. P. 225–236.
  18. Четвериков С.П., Четверикова Д.В., Кенджева А.А., Бакаева М.Д. Новые устойчивые к гербицидам штаммы микроорганизмов для защиты сельскохозяйственых растений // Пробл. агрохим. и экол. 2020. № 4. С. 35–39.
  19. Iqbal S., Wang X., Mubeen I., Kamran M., Kanwal I., Díaz G. A., Abbas A., Parveen A., Atiq M.N., Alshaya H., ElAbedin T.K.Z., Fahad S. Phytohormones trigger drought tolerance in crop plants: outlook and future perspectives // Front. Plant Sci. 2022. V. 12. Art. 799318.
  20. Wang X., Komatsu S. The role of phytohormones in plant response to flooding // Inter. J. Mol. Sci. 2022. V. 23. № 12. Art. 6383.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).