REACTION OF PEA LEAF PIGMENT COMPLEX TO SEED TREATMENT WITH LOCAL Streptomyces ISOLATES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In recent years, there has been an increased interest in drugs based on bacteria of the genus Streptomyces, which have not only a fungicidal, but also a growth-regulating effect on plants. The nature of the effect of such drugs on the photosynthetic activity of plant leaves, especially of legumes, is still poorly understood. In this regard, in 2021–2024, the reaction of 3 varieties of seed peas (Pisum sativum L.) to the pre-sowing treatment of seeds with 2 laboratory samples of local S. castelarensis A4 and S. antimycoticus 8A1-3 by the level of accumulation of photosynthetic pigments by leaves, comparing them with the action of the chemical mordant Pioneer, CS and the biological preparation Pseudobacterin-2 (the active agent is Pseudomonas aureofaciens) was studied in the field. It was found that the conditions of the growing year explained 41.8–67.1% of the variation in pigment content, the genotypic features of the studied varieties – 10.7–12.5%, seed treatment – from 1.1 to 2.5%. On average, in the experiment (4 years × 3 varieties), the stimulating effect of all the studied preparations on the accumulation of pigments in pea leaves prevailed. For Chl a, the effectiveness of the drugs decreased in the order of Pioneer (8.25%) – S. antimycoticus 8A1-3 (7.48%) – Pseudobacterin-2 (3.68%) – S. castelarensis A4 (2.83%). For Chl b, the order of preparations was slightly different: S. antimycoticus 8A1-3 (15.37%) – Pseudobacterin-2 (13.70%) – Pioneer (11.27%) – S. castelarensis A4 (8.45%). The stimulating effect of drugs on carotenoid content decreased in the order of Pioneer (8.98%) – S. antimycoticus 8A1-3 (8.40%) – S. castelarensis A4 (3.48%) – Pseudobacterin-2(1.57%). The pigment complexes of pea leaves of the E-483 variety reacted best to seed treatment with preparations of local Streptomyces strains (depressive effect was noted only in 8.3% of observations), the reaction was slightly worse in the Falyonsky Yubileyny variety, where depression was noted in 20.8% of observations. Most often, the drugs led to a depression of pigment accumulation in the leaves of the Falyonsky Usatiy variety (38% of the experimental variants), the stimulating effect was manifested only in 19% of observations.

About the authors

E. M. Lisitsyn

Federal Agricultural Research Center of the North-East named after N.V. Rudnitsky

Kirov, Russia

I. V. Lyskova

Federal Agricultural Research Center of the North-East named after N.V. Rudnitsky

Email: fss.zam@yandex.ru
Kirov, Russia

T. V. Lyskova

Federal Agricultural Research Center of the North-East named after N.V. Rudnitsky

Kirov, Russia

S. S. Pislegina

Federal Agricultural Research Center of the North-East named after N.V. Rudnitsky

Kirov, Russia

References

  1. FAOSTAT Food and Agriculture Organization of the United Nations. 2022. URL: http://www.fao.org/faostat/ en/#data/QC)
  2. Karkanis A., Ntatsi G., Kontopoulou C.-K., Pristeri A., Bilalis D., Savvas D. Field pea in European cropping systems: adaptability, biological nitrogen fixation and cultivation practicesи // Not. Bot. Horti. Agrobot. Cluj-Napoca, 2016. № 44. Р. 325–336. doi: 10.15835/nbha44210618
  3. Harveson R.M., Pasche J.S., Porter L.D., Chen W., Burrows M. Compendium of pea diseases and pests. 3rd ed. Saint Paul, MI, USA: American Phytopathological Society (APS Press), 2020. 130 р.
  4. Aslam S., Ghazanfar M.U., Munir N., Hamid M.I. Managing fusarium wilt of pea by utilizing different application methods of fungicides // Pakistan J. Phytopathol. 2019. № 31. Р. 81–88. doi: 10.33866/phytopathol.031.01.0482
  5. Ma G., Gao X., Nan J., Zhang T., Xie X., Cai Q. Fungicides alter the distribution and diversity of bacterial and fungal communities in ginseng fields // Bioengineered. 2021. № 12. Р. 8043–8056. DOI: 0.1080/21655979.2021.1982277
  6. Rashad Y.M., Moussa T.A.A. Biocontrol agents for fungal plant diseases management // Cottage industry of biocontrol agents and their applications: Practical aspects to deal biologically with pests and stresses facing strategic сrops / Еds. El-Wakeil N., Saleh M., Abu-Hashim M. Cham, Switzerland: Springer International Publishing, 2020. 337–363 р.
  7. Широких И.Г., Назарова Я.И., Бакулина А.В., Абубакирова Р.И. Новые штаммы стрептомицетов как перспективные биофунгициды // Теор. и прикл. экол. 2021. № 1. С. 172–180. doi: 10.25750/1995-4301-2021-1-172-180
  8. Pacios-Michelena S., Aguilar González C.N., Alvarez-Perez O.B., Rodriguez-Herrera R., Chávez-González M., Arredondo Valdés R., Ascacio Valdés J.A., Govea Salas M., Ilyina A. Application of Streptomyces antimicrobial compounds for the control of phytopathogens // Front. Sustain. Food Syst. 2021. № 5. Р. 1–13. DOI: 10.3389/ fsufs.2021.696518
  9. de Lima Procópio R.E., da Silva I.R., Martins M.K., de Azevedo J.L., de Araújo J.M. Antibiotics produced by Streptomyces // Brazil. J. Infect. Dis. 2012. № 16. Р. 466–471. doi: 10.1016/j.bjid.2012.08.014
  10. Viaene T., Langendries S., Beirinckx S., Maes M., Goormachtig S. Streptomyces as a plant’s best friend? // FEMS Microbiol. Ecol. 2016. № 92. Р. 1–10. doi: 10.1093/femsec/fiw119
  11. de Jesus Sousa J.A., Olivares F.L. Plant growth promotion by streptomycetes: Ecophysiology, mechanisms and applications // Chem. Biol. Technol. Agric. 2016. № 3. Р. 24. doi: 10.1186/s40538-016-0073-5
  12. LeBlanc N. Bacteria in the genus Streptomyces are effective biological control agents for management of fungal plant pathogens: A meta-analysis // BioControl. 2022. № 67. Р. 111–121. doi: 10.1007/s10526-021-10123-5
  13. Colombo E.M., Kunova A., Cortesi P., Saracchi M., Pasquali M. Critical assessment of Streptomyces spp. Able to control toxigenic fusaria in cereals: A literature and patent review // Inter. J. Mol. Sci. 2019. № 20. Р. 6119. doi: 10.3390/ijms20246119
  14. Balestrini R., Brunetti C., Chitarra W., Nerva L. Photosynthetic traits and nitrogen uptake in crops: Which is the role of arbuscular mycorrhizal fungi? // Plants. 2020. № 9. Р. 1105. doi: 10.3390/plants9091105
  15. Sharma N., Khanna K., Manhas R.K., Bhardwaj R., Ohri P., Alkahtani J., Alwahibi M.S., Ahmad P. Insights into the role of streptomyces hydrogenans as the plant growth promoter, photosynthetic pigment enhancer and biocontrol agent against meloidogyne incognita in solanum lycopersicum seedlings // Plants. 2020. № 9. Р. 1109. doi: 10.3390/plants9091109
  16. Passari A.K., Upadhyaya K., Singh G., Abdel-Azeem A.M., Thankappan S., Uthandi S., Hashem A., Abd-Allah E.F., Malik J.A., As A. Enhancement of disease resistance, growth potential, and photosynthesis in tomato (Solanum lycopersicum) by inoculation with an endophytic actinobacterium, Streptomyces thermocarboxydus strain BPSAC147 // PLoS ONE. 2019. № 14. e0219014. doi: 10.1371/journal.pone.0219014
  17. Широких И.Г., Лыскова И.В., Назарова Я.И., Градобоева Т.П., Пислегина С.С., Боков Н.А., Абубакирова Р.И. Местные штаммы стрептомицетов в защите гороха (Pisum sativum L.) от вредоносных инфекций // Теор. и прикл. экол. 2022. № 2. С. 173–182. doi: 10.25750/1995-4301-2022-2-173-182
  18. Lichtenthaler Н.К., Buschmann C. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy // Current Protocol. Food Analyt. Chem. 2001. № 1(1). F. 4.3.1–F. 4.3.8. doi: 10.1002/0471142913. faf0403s01
  19. El-Sharkawy H.H.A., Rashad Y.M., Elazab N.T. Synergism between Streptomyces viridosporus HH1 and Rhizophagus irregularis effectively induces defense responses to fusarium wilt of pea and improves plant growth and yield // J. Fungi (Basel). 2022. № 8(7). Р. 683. doi: 10.3390/jof8070683
  20. Dave A., Ingle S. Streptomyces sp. S-9 promotes plant growth and confers resistance in Pigeon pea (Cajanus cajan) against Fusarium wilt 3 // Biotech. 2021. № 11(11). Р. 459. doi: 10.1007/s13205-021-02989-0
  21. Doolotkeldieva T., Bobusheva S., Konurbaeva M. Effects of Streptomyces biofertilizer to soil fertility and rhizosphere’s functional biodiversity of agricultural plants // Adv. Microbiol. 2015. № 5. Р. 555–571. DOI: 10.4236/ aim.2015.57058
  22. Olanrewaju O.S., Babalola O.O. Streptomyces: implications and interactions in plant growth promotion // Appl. Microbiol. Biotechnol. 2019. № 103(3). Р. 1179–1188. doi: 10.1007/s00253-018-09577-y
  23. Khan S., Srivastava S., Karnwal A., Malik T. Streptomyces as a promising biological control agents for plant pathogens // Front. Microbiol. 2023. № 1. Р. 1285543. doi: 10.3389/fmicb.2023.1285543
  24. Bakker M.G., Schlatter D.C., Otto-Hanson L., Kinkel L.L. Diffuse symbioses: roles of plant-plant, plant-microbe and microbe-microbe interactions in structuring the soil microbiome // Mol. Ecol. 2014. № 23(6). Р. 1571–1583. doi: 10.1111/mec.12571
  25. Becklund K., Powers J., Kinkel L. Tree species effects on pathogen-suppressive capacities of soil bacteria across two tropical dry forests in Costa Rica // Oecologia. 2016. № 182(3). Р. 789–802. doi: 10.1007/s00442-016-3702-6

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).