Influence of Iron Glycinate and Its Ultrafine Particles on the Growth and Biochemical Parameters of Triticum aestivum L. Seedlings
- Authors: Peshkov S.A.1, Galaktionova L.V.1, Khovrina T.D.1, Yudin A.A.1, Mukovoz P.P.2, Peshkova T.V.1, Glinushkin A.P.3,4,5
-
Affiliations:
- Orenburg State University
- Ulyanov Chuvash State University
- Zelinsky Institute of Organic Chemistry of the RAS
- Peoples’ Friendship University of Russia
- Lomonosov Moscow State University
- Issue: No 4 (2025)
- Pages: 40-48
- Section: Experimental articles
- URL: https://journals.rcsi.science/0002-1881/article/view/289097
- DOI: https://doi.org/10.31857/S0002188125040056
- EDN: https://elibrary.ru/UOZFZH
- ID: 289097
Cite item
Abstract
The effect of iron chelates and its ultrafine particles (UFPs) on the growth and biochemical parameters of Triticum aestivum L. plants was compared. As an example of the effect of chelates, iron glycinate was chosen, with the help of which UFPs were obtained by interacting with quercetin. The relevance of the study was the development of new types of fertilizers based on UFPs metals, characterized by higher bioavailability, which will reduce their application rates to 6.25 · 10–4 mg/l of the finished solution. UFPs of iron were obtained by the method of “green” synthesis. The confirmation of their sizes was carried out by the method of dynamic light scattering. The positive effect of UFPs on the length and biomass of shoots and wheat roots was shown, which increased these indicators relative to the control by 29, 45 and 81%, respectively. The use of quercetin as a separate supplement improved these indicators by 37% relative to the control. The possibility of using iron UFPs obtained by the method of “green” synthesis to increase stress resistance of plants is substantiated.
Full Text

About the authors
S. A. Peshkov
Orenburg State University
Email: mpp27@mail.ru
Russian Federation, 13, Pobeda Ave., Orenburg, 460018
L. V. Galaktionova
Orenburg State University
Email: mpp27@mail.ru
Russian Federation, 13, Pobeda Ave., Orenburg, 460018
T. D. Khovrina
Orenburg State University
Email: mpp27@mail.ru
Russian Federation, 13, Pobeda Ave., Orenburg, 460018
A. A. Yudin
Orenburg State University
Email: mpp27@mail.ru
Russian Federation, 13, Pobeda Ave., Orenburg, 460018
P. P. Mukovoz
Ulyanov Chuvash State University
Author for correspondence.
Email: mpp27@mail.ru
Russian Federation, 15, Moskovsky Ave., Cheboksary, 428015
T. V. Peshkova
Orenburg State University
Email: mpp27@mail.ru
Russian Federation, 13, Pobeda Ave., Orenburg, 460018
A. P. Glinushkin
Zelinsky Institute of Organic Chemistry of the RAS; Peoples’ Friendship University of Russia; Lomonosov Moscow State University
Email: mpp27@mail.ru
Russian Federation, 47, Leninsky Ave., Moscow, 119991; 6, Miklukho-Maklay St., Moscow, 117198; Bldg. 12, 1, Leninskie Gory, Moscow, 119234
References
- Todorov L.T., Kostova I.P. Coumarin-transition metal complexes with biological activity: current trends and perspectives // Front Chem. 2024. V. 12. P. 1342772.
- El-Lateef H.M.A., El-Dabea T., Khalaf M.M., Abu-Dief A.M. Recent overview of potent antioxidant activity of coordination compounds // Antioxidants (Basel). 2023. V. 12. № 2. P. 213.
- Marukhlenko A.V., Morozova M.A., Mbarga A.M.J., Antipova N.V., Syroeshkin A.V., Podoprigora I.V., Maksimova T.V. Chelation of zinc with biogenic amino acids: Description of properties using Balaban index, assessment of biological activity on spirostomum ambiguum cellular biosensor, influence on biofilms and direct antibacterial action // Pharmaceuticals (Basel). 2022. V. 15. № 8. P. 979.
- Yu J.L., Wu S., Zhou C., Dai Q.Q., Schofield C.J., Li G.B. MeDBA: the Metalloenzyme data bank and analysis platform // Nucleic Acids Res. 2023. V. 51. № D1. P. D593–D602.
- Lee V.J., Janisse S.E., Heffern M.C. Plant-derived chelators and ionophores as potential therapeutics for metabolic diseases // Chem. Soc. Rev. 2023. V. 52. № 11. P. 3927–3945.
- Glinushkin A., Akimova S., Nikulina E., Tsirulnikova N., Kirkach V., Kalinitchenko V., Radzhabov A., Radkevich E., Marchenko L., Solovyov A., Zubkov A., Panova M., Konstantinovich A., Indolov V. Preliminary study: Micropropagation using five types of chelated iron and the subsequent acclimation of blue honeysuckle (Lonicera caerulea var. kamtschatica Sevast.) // Forests. 2023. V. 14. № 4. P. 821.
- Cai Y., Liu L., Zhang W., Xing S., Liang X., Gao M., Yu H., Jiang Z., Ogino K., Chen X., Wang B., Si H. Effects of adding pyrochar and hydrochar to calcareous soil on nutrient uptake by maize // BioResources. 2023. V. 18. № 2. P. 2981–2997.
- Figovsky O., Beilin D. Green nanotechnology. N.Y.: Jenny Stanford Publishing, 2017. 558 p.
- Khan F., Shariq M., Asif M., Siddiqui M. A., Malan P., Ahmad F. Green nanotechnology: Plant-mediated nanoparticle synthesis and application // Nanomaterials. 2022. V. 12. № 4.
- Vijayaram S., Razafindralambo H., Sun Y.Z., Vasantharaj S., Ghafarifarsani H., Hoseinifar S.H., Raeeszadeh M. Applications of green synthesized metal nanoparticles – a review // Biol Trace Elem. Res. 2024. V. 202. № 1. P. 360–386.
- Sari I.P., Yulizar Y. Green synthesis of magnetite (Fe3O4) nanoparticles using Graptophyllum pictum leaf aqueous extract // IOP Conf. Ser.: Mater. Sci. and Engin. 2017. V. 191. № 1. P. 012014.
- Wei Y., Fang Z., Zheng L., Tan L., Tsang E.P. Green synthesis of Fe nanoparticles using Citrus maxima peels aqueous extracts // Mater. Lett. 2016. V. 185. P. 384–386.
- Gour A., Jain N.K. Advances in green synthesis of nanoparticles // Artif. Cells Nanomed. Biotechnol. 2019. V. 47. № 1. P. 844–851.
- Brusko V., Garifullin B., Geniyatullina G., Kuryntseva P., Galieva G., Galitskaya P., Selivanovskaya S., Dimiev A.M. Novel biodegradable chelating agents for micronutrient fertilization // J. Agric. Food Chem. 2023. V. 71. № 41. P. 14979–14988.
- Hyder S., Ul-Nisa M., Shahzadi, Shahid H., Gohar F., Gondal A.S., Riaz N., Younas A., Santos-Villalobos S.L., Montoya-Martinez A.C., Sehar A., Latif F., Rizvi Z.F., Iqbal R. Recent trends and perspectives in the application of metal and metal oxide nanomaterials for sustainable agriculture // Plant Physiol. Biochem. 2023. V. 202. P. 107960.
- Parkinson S.J., Tungsirisurp S., Joshi C., Richmond B.L., Gifford M.L., Sikder A., Lynch I., O’Reilly R.K., Napier R.M. Polymer nanoparticles pass the plant interface // Nat. Commun. 2022. V. 13. № 1. P. 7385.
- Husted S., Minutello F., Pinna A., Tougaard S.L., Mos P., Kopittke P.M. What is missing to advance foliar fertilization using nanotechnology? // Trends Plant Sci. 2023. V. 28. № 1. P. 90–105.
- Jiang Y., Zhou P., Zhang P., Adeel M., Shakoor N., Li Y., Li M., Guo M., Zhao W., Lou B., Wang L., Lynch I., Rui Y. Green synthesis of metal-based nanoparticles for sustainable agriculture // Environ. Pollut. 2022. V. 309. P. 119755.
- Francis D.V., Abdalla A.K., Mahakham W., Sarmah A.K., Ahmed Z.F.R. Interaction of plants and metal nanoparticles: Exploring its molecular mechanisms for sustainable agriculture and crop improvement // Environ. Inter. 2024. V. 190. P. 108859.
- Sokolov M.S., Glinushkin A.P., Spiridonov Y.Y., Toropova E.Y., Filipchuk O.D. Technological features of soil-protective resource-saving agriculture (in the development of the FAO concept) // Agrochemistry. 2019. № 5. P. 3–22.
- Makarov V.V., Love A.J., Sinitsyna O.V., Makarova S.S., Yaminsky I.V., Taliansky M.E., Kalinina N.O. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants // Acta Naturae. 2014. V. 6. № 1. P. 35–44.
- Mustapha T., Misni N., Ithnin N.R., Daskum A.M., Unyah N.Z.A. Review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications // Inter. J. Environ. Res. Public Health. 2022. V. 19. № 2. P. 674.
- Wang X., Xin C., Cai J., Zhou Q., Dai T., Cao W., Jiang D. Heat priming induces trans-generational tolerance to high temperature stress in wheat // Front Plant Sci. 2016. V. 7. P. 501.
- Ahmed S., Ahmad M., Swami B.L., Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise // J. Adv. Res. 2016. V. 7. № 1. P. 17–28.
- Kurepa J., Shull T.E., Smalle J.A. Friends in arms: Flavonoids and the auxin/cytokinin balance in terrestrialization // Plants (Basel). 2023. V. 12. № 3. P. 517.
- Daryanavard H., Postiglione A.E., Muhlemann J.K., Muday G.K. Flavonols modulate plant development, signaling, and stress responses // Curr. Opin. Plant Biol. 2023. V. 72. P. 102350.
- Laoue J., Fernandez C., Ormeno E. Plant flavonoids in mediterranean species: A Focus on flavonols as protective metabolites under climate stress // Plants (Basel). 2022. V. 11. № 2. P. 172.
- Tohge T., Fernie A.R. Specialized metabolites of the flavonol class mediate root phototropism and growth // Mol. Plant. 2016. V. 9. № 12. P. 1554–1555.
- Pestana M., Saavedra T., Gama F., Rodrigues M.A., de Varennes A., Da Silva J.P., Correia P.J. Quercetin promotes the recovery of iron chlorosis in strawberry plants // Plant Physiol. Biochem. 2024. V. 217. P. 109266.
- Глинушкин А.П., Белошапкина О.О. Влияние синтетических и биологических препаратов на всхожесть семян и выживаемость пшеницы // Достиж. науки и техн. АПК. 2013. № 1. С. 11–13.
Supplementary files
