Agrochemical and Biological State of Sod-Podzolic Soil after Continuous Joint and Separate Application of Straw and Mineral Fertilizers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In a long-term field experiment, the influence of long-term (from 1997–1998) joint and separate application of straw and mineral fertilizers (MF) on the indicators characterizing the biological and agrochemical state of sod-podzolic soil was studied. The study was carried out at the end of the 5th rotation of the 5-field grain crop rotation (winter wheat–annual lupine for grain–potatoes–barley–annual grasses (lupine + oats)) after harvesting annual grasses. To compare the arable soil of crop rotation with natural soil analogues, biological parameters in the soil of fallow and deposits were studied. It was found that the 25-year return of straw from grain and leguminous crops in combination with average doses of MF contributed most to the optimization of the biological state of the arable layer of the studied soil. The highest indicators of microbial carbon content (Cmicr), its share in total organic carbon (Cmicr : Corg), and the transformation coefficient (Kt) are noted, indicating the predominance of the accumulative orientation of the transformation processes of mobil organic matter (MOM), as well as the number of ecological and trophic groups of microorganisms (TGMO) involved in the carbon cycle and nitrogen, basal respiration (BR). On the contrary, such indicators, which can be used to assess the intensity of destructive processes, as the coefficients of oligotrophy (Kolig), oligonithophilicity (Kolign), and specific respiration (qCO2), were minimal. With the annual application of MF, the phosphorus and potassium content in the soil increased significantly compared to the initial one – by 108 and 29 mg/kg, respectively. With straw embedded in the arable layer in the amount of 45 t/ha, 515 kg/ha of potassium was returned to the soil over 5 rotations of crop rotation, which led to an increase in its content by another 24–25 mg/kg relative to the background.

Full Text

Restricted Access

About the authors

I. V. Rusakova

All-Russian Research Institute for Organic Fertilizers and Peat – a branch of the Upper Volga Federal Agrarian Research Center

Author for correspondence.
Email: rusakova.iv@yandex.ru
Russian Federation, 2, Pryanishnikov St., Vyatkino, Sudogodsky District, Vladimir Region, 601390

References

  1. Семенов В.М., Ходжаева А.К. Агроэкологические функции растительных остатков в почве // Агрохимия. 2006. № 7. С. 63–81.
  2. Hartmann M., Frey B., Mayer J., Mäder P., Widmer F. Distinct soil microbial diversity under long-term organic and conventional farming // ISME J. 2015. V. 9. P. 1177–1194.
  3. Xu Z., Sun R., He T., Sun Y., Wu M., Xue Y., Wang J. Disentangling the impact of straw incorporation on soil microbial communities: Enhanced network complexity and ecological stochasticity // Sci. Total Environ. 2023. V. 863. 160918.
  4. Kallenbach C.M., Frey S.D., Grandy A.S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls // Nat. Commun. 2016. V. 7. 13630.
  5. Благодатская Е.В., Семенов М.В., Якушев А.В. Активность и биомасса почвенных микроорганизмов в изменяющихся условиях окружающей среды М.: Товар-во научн. изд-й КМК, 2016. 243 с.
  6. Hakeem K.R. Organic fertilizers – new advances and applications [Working title]. 2023. IntechOpen. doi: 10.5772/intechopen.1001521
  7. An T., Schaeffer S., Zhuang J., Radosevich M., Li S., Li H., Pei J., Wang J. Dynamics and distribution of 13C-labeled straw carbon by microorganisms as affected by soil fertility levels in the Black Soil region of Northeast China // Biol. Fertil. Soil. 2015. V. 51. P. 605–613.
  8. Чернов Т.И., Семенов М.В. Управление почвенными микробными сообществами: возможности и перспективы (обзор) // Почвоведение. 2021. № 12. С. 1506–1522.
  9. Giacometti C., Demyan M. S., Cavani L., Marzadori C., Ciavatta C., Kandeler E. Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems // Appl. Soil Ecol. 2013. V. 64. P. 32–48.
  10. Xi H., Jia M., Kuzyakov Y., Peng Z., Zhang Y., Han J., Liu Y. Key decomposers of straw depending on tillage and fertilization // Agricult. Ecosyst. Environ. 2023. V. 358. P. 108717.
  11. Bertola M., Ferrarini A., Visioli G. Improvement of soil microbial diversity through sustainable agricultural practices and its evaluation by -omicsa pproaches: A perspective for the environment, food quality and human safety // Microorganisms. 2021. V. 9. № 7. 1400.
  12. Алиева Е.И. Накопление и разложение растительных остатков полевых культур и влияние их на баланс органического вещества и питательных элементов в дерново-подзолистой почве // Агрохимия. 1978. № 4. С. 57–63.
  13. Серая Т.М., Бирюкова Е.Н., Бирюкова О.М., Мезенцева Е.Г. Высвобождение элементов питания при заделке соломы в дерново-подзолистые почвы в зависимости от ее видового состава и удобрения азотом // Агрохимия. 2013. № 3. С. 52–59.
  14. Русакова И.В. Теоретические основы и методы управления плодородием почв при использовании растительных остатков в земледелии. Владимир: ВНИИОУ, 2016. 131 с.
  15. Благодатский С.А., Благодатская Е.В., Горбенко А.А., Паников Н.С. Регидратационный метод определения биомассы микроорганизмов в почве // Почвоведение. 1987. № 4. С. 71–81.
  16. Титова В.И., Козлов А.В. Методы оценки функционирования микробоценоза почвы, участвующего в трансформации органического вещества. Н. Новгород, 2012. 64 с.
  17. Ананьева Н.Д., Сусьян Е.А., Рыжова И.М., Бочарникова Е.О., Стольникова Е.В. Углерод микробной биомассы и микробное продуцирование двуокиси углерода дерново-подзолистыми почвами постаг- рогенных биогеоценозов и коренных ельников южной тайги (Костромская область) // Почвоведение. 2009. № 9. С. 1108–1116.
  18. Муха В.Д. О показателях, отражающих интенсивность и направленность почвенных процессов. Харьков: Харьков. СХИ, 1980. Т. 273. С. 13–16.
  19. Практикум по агрохимии / Под ред. В.Г. Минеева. М.: Изд-во МГУ, 1989. 304 с.
  20. Горобцова О.Н., Гедгафова Ф.В., Улигова Т.С., Темботов Р.Х. Экофизиологические индикаторы состояния микробной биомассы черноземов Центрального Кавказа (в пределах Терского варианта поясности Кабардино-Балкарии) // Экология. 2016. № 1. С. 22–29.
  21. Langer U., Klimanek E.M. Soil microbial diversity of four German long-term field experiments (Diversität von Bodenmikroorganismen in Vier Deutschen Langzeitversuchen) // Arch. Agron. Soil Sci. 2006. V. 52. № 5. P. 507–523.
  22. Agbenin J.O., Adeniyi T. The microbial biomass properties of a savanna soil under improved grass and legume pastures in northern Nigeria // Agric. Ecosyst. Environ. 2005. V. 109. P. 245–254.
  23. McGonigle T.P., Turner W.G. Grasslands and croplands have different microbial biomass carbon levels per unit of soil organic carbon // Agriculture. 2017. V. 7. № 7.
  24. Powlson D.S., Brookes P.S., Christensen B.T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation // Soil Biol. Biochem. 1987. V. 19. P. 159–164.
  25. Bonde T.A., Schnurer J., Rosswall T. Microbial biomass as a fraction of potentially mineralizable nitrogen in soils from long-term field experiments // Soil Biol. Biochem. 1988. V. 20. P. 447–452.
  26. Kallenbach C.M., Grandy A.S., Frey S.D., Diefendorf A.F. Microbial physiology and necromass regulate agricultural soil carbon accumulation // Soil Biol. Biochem. 2015. V. 91. P. 279–290.
  27. Miltner A., Bombach P., Schmidt-Brücken B., Kästner M. SOM genesis: microbial biomass as a significant source // Biogeochemistry. 2012. V. 111(1–3). P. 41–55.
  28. Ананьева Н.Д., Сушко С.В., Иващенко К.В., Васенев В.И. Микробное дыхание почв подтайги и лесостепи европейской части России: полевой и лабораторный подходы // Почвоведение. 2020. № 10. С. 1276–1286.
  29. Anderson T.-H. Microbial eco-physiological indicators to access soil quality // Agricult. Ecosyst. Environ. 2003. V. 98(1–3). P. 285–293.
  30. Fließbach A., Oberholzer H.R., Gunst L., Mäder P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming // Agricult. Ecosyst. Environ. 2007. V. 118(1–4). P. 273–284.
  31. Добровольская Т.Г., Звягинцев Д.Г., Чернов И.Ю., Головченко А.В., Зенова Г.М., Лысак Л.В., Манучарова Н.А., Марфенина О.Е., Полянская Л.М., Степанов А.Л., Умаров М.М. Роль микроорганизмов в экологических функциях почв // Почвоведение. 2015. № 9. С. 1087–1096.
  32. Тихонович И.А., Круглов Ю.В. Микробиологические аспекты плодородия почвы и проблемы устойчивого земледелия // Плодородие. 2006. № 5. С. 9–12.
  33. Wang X., Bian Q., Jiang Y., Zhu L., Chen Y., Liang Y., Sun B. Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes // Soil Biol. Biochem. 2021. V. 153. 108062.
  34. Бойко В.С., Шулико Н.Н., Тимохин А.Ю. Оценка влияния минеральных удобрений на почвенный микробиоценоз и продуктивность сорговых культур // Агрофизика. 2023. № 1. С. 33–41.
  35. Зинченко М.К., Зинченко С.И. Биологическая диагностика экологического состояния серой лесной почвы в условиях интенсивной агрогенной нагрузки // Земледелие. 2023. № 1. С. 14–18.
  36. Kaschuk G., Alberton O., Hungria M. Three decades of soil microbial biomass studies in Brazilian ecosystems: Lessons learned about soil quality and indications for improving sustainability // Soil Biol. Biochem. 2010. V. 42. P. 1–13.
  37. Powlson D., Xu J., Brookes P. Through the eye of the needle – the story of the soil microbial biomass // Microbial Biomass: A Paradigm Shift in Terrestrial Biogeochemistry. 2017. P. 1–40.
  38. Kuzyakov Y., Blagodatskaya E. Microbial hotspots and hot moments in soil: concept & review // Soil Biol. Biochem. 2015. V. 83. P. 184–199.
  39. Hiel M.P., Barbieux S., Pierreux J., Olivier C., Lobet G., Roisin C., Dumont B. Impact of crop residue management on crop production and soil chemistry after seven years of crop rotation in temperate climate, loamy soils // Peer J. 2018. V. 6. P. e4836.
  40. Damon P.M., Bowden B., Rose T., Rengel Z. Crop residue contributions to phosphorus pools in agricultural soils: A review // Soil Biol. Biochem. 2014. V. 74. P. 127–137.
  41. Jordan D.В., Kremer R.J., Bergfield W.A., Kim K.Y., Cacnio V.N. Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields // Biol. Fertil. Soils. 1995. V. 19. № 4. P. 297–302.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Smicr content in the arable layer of soil: (a) - at the end, (b) - during the 5th rotation of crop rotation.

Download (59KB)

Copyright (c) 2025 The Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».