Effect of the nitrogen monoxide synthesis donor and inhibitor on the stress metabolites level of basidiomycetes under abiotic stress conditions
- 作者: Loshchinina Е.А.1, Kupryashina М.А.1
-
隶属关系:
- Russian Academy of Sciences
- 期: 编号 2 (2025)
- 页面: 65-73
- 栏目: Ecotoxicology
- URL: https://journals.rcsi.science/0002-1881/article/view/285088
- DOI: https://doi.org/10.31857/S0002188125020093
- EDN: https://elibrary.ru/vauvrm
- ID: 285088
如何引用文章
详细
Nitrogen monoxide in fungi participates in the processes of reproduction, pathogenesis and adaptation to environmental conditions. Substances that affect the NO content in fungal cultures have an effect on growth processes and the synthesis of other metabolites. The effect of a donor and an inhibitor of NO synthesis on the production of stress metabolites of basidiomycetes Lentinus edodes and Grifola frondosa under abiotic stress conditions (high- and low-temperature shock, lack of carbon and/or nitrogen in the nutrient medium) was studied. Under all the conditions studied, the introduction of L-NAME (NO synthesis inhibitor) into the medium stimulated, and SNP (NO donor) suppressed the growth of fungal mycelium. At the same time, the content of the protective stress metabolites trehalose, mannitol and proline in both basidiomycetes increased to 70% in media with SNP and decreased to 65% in media with L-NAME. The most pronounced effect of SNP and L-NAME on the growth of fungal cultures and their accumulation of protective compounds turned out to be under the influence of temperature stress.
全文:

作者简介
Е. Loshchinina
Russian Academy of Sciences
编辑信件的主要联系方式.
Email: loshchinina@yandex.ru
Institute of Biochemistry and Physiology of Plants and Microorganisms
俄罗斯联邦, prosp. Entuziastov 13, Saratov 410049М. Kupryashina
Russian Academy of Sciences
Email: loshchinina@yandex.ru
Institute of Biochemistry and Physiology of Plants and Microorganisms
俄罗斯联邦, prosp. Entuziastov 13, Saratov 410049参考
- Rinker D.L. Spent mushroom substrate uses // Edible and medicinal mushrooms: technology and applications / Eds. Zied D.C., Pardo-Giménez A. John Wiley & Sons, 2017. P. 427–454.
- Iordachescu M., Imai R. Trehalose and abiotic stress in biological systems // Abiotic stress in plants – mechanisms and adaptations / Shanker A. Rijeka, Croatia: InTechPublisher, 2011. P. 215–234.
- Феофилова Е.П. Биохимическая адаптация грибов к температурному стрессу // Микробиология. 1994. Т. 63. № 5. С. 757–776.
- Ocón A., Hampp R., Requena N. Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi // New Phytologist. 2007. V. 174. P. 879–891.
- Феофилова Е.П., Усов А.И., Мысякина И.С., Кочкина Г.А. Трегалоза: особенности химического строения, биологические функции и практическое значение // Микробиология. 2014. Т. 83. № 3. С. 271–271.
- Solomon P.S., Waters O.D.C., Oliver R.P. Decoding the mannitol enigma in filamentous fungi // Trends Microbiol. 2007. V. 15. № 6. P. 257–262.
- Patel T.K., Williamson J.D. Mannitol in plants, fungi, and plant–fungal interactions // Trends Plant Sci. 2016. V. 21. № 6. P. 486–497.
- Kaya C., Ashraf M., Alyemeni M.N., Corpas F.J., Ahmad P. Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate–glutathione cycle and glyoxalase system // J. Hazard. Mater. 2020. V. 399. № 15. P. 123020.
- Ahanger M.A., Aziz U., Alsahli A.A., Alyemeni M.N., Ahmad P. Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate–glutathione cycle in salt stressed Vigna angularis // Biomolecules. 2020. V. 10. № 1. P. 42.
- Глянько А.К., Васильева Г.Г. Активные формы кислорода и азота при бобово-ризобиальном симбиозе (обзор) // Прикл. биохим. и микробиол. 2010. Т. 46. № 1. С. 21–28.
- Bhat J.A., Ahmad P., Corpas F.J. Main nitric oxide (NO) hallmarks to relieve arsenic stress in higher plants // J. Hazard. Mater. 2021. V. 406. № 15. P. 124289.
- Cánovas D., Marcos J.F., Marcos A.T., Strauss J. Nitric oxide in fungi: is there NO light at the end of the tunnel? // Curr. Genet. 2016. V. 62. P. 513–518.
- Zhao Y., Lim J., Xu J., Yu J.H., Zheng W. Nitric oxide as a developmental and metabolic signal in filamentous fungi // Mol. Microbiol. 2020. V. 113. № 5. P. 872–882.
- Kong W.-W., Huang C.-Y., Chen Q., Zou Y.-J., Zhang J.-X. Nitric oxide alleviates heat stress-induced oxidative damage in Pleurotus eryngii var. tuoliensis // Fungal Genet. Biol. 2012a. V. 49. № 1. P. 15–20.
- Kong W.-W., Huang C.-Y., Chen Q., Zou Y.-J., Zhao M.-R., Zhang J.-X. Nitric oxide is involved in the regulation of trehalose accumulation under heat stress in Pleurotus eryngii var. tuoliensis // Biotechnol. Lett. 2012b. V. 34. P. 1915–1919.
- Song N.-K., Jeong C.-S., Choi H.-S. Identification of nitric oxide synthase in Flammulina velutipes // Mycologia. 2000. V. 92. № 6. P. 1027–1032.
- Wang J., Higgins V.J. Nitric oxide has a regulatory effect in the germination of conidia of Colletotrichum coccodes // Fungal Genet. Biol. 2005. V. 42. P. 284–292.
- Gu L., Zhong X., Lian D., Zheng Y., Wang H., Liu X. Triterpenoid biosynthesis and the transcriptional response elicited by nitric oxide in submerged fermenting Ganoderma lucidum // Process Biochem. 2017. V. 60. P. 19–26.
- Kienle I., Burgert M., Holzer H. Assay of trehalose with acid trehalase purified from Saccharomyces cerevisiae // Yeast. 1993. V. 9. № 6. P. 607–611.
- Ковардаков С.А., Изместьева М.А., Шмелева В.Л. Содержание маннита, хлорофилла а и сухого вещества в тканях Lainaria saccarina (L.) при выращивании на разной глубине // Экол. моря. 2000. Т. 50. С. 32–36.
- Шихалеева Г.Н., Будняк А.К., Шихалеев И.И., Иващенко О.Л. Модифицированная методика определения пролина в растительных объектах // Вісник Харків. нац. універ-ту ім. В.Н. Каразіна. Сер. біол. 2014. Т. 21. № 1112. С. 168–172.
- Сергеева Я.Э., Галанина Л.А., Феофилова Е.П. О новой функции трегалозы и об особенностях липидообразования у мицелиальных грибов // Микробиология. 2010. Т. 79. № 4. С. 470–474.
- Rubio-Texeira M., Van Zeebroeck G., Thevelein J.M. Trehalose metabolism: Enzymatic pathways and physiological functions // The Mycota (A Comprehensive treatise on fungi as experimental systems for basic and applied research). V. III. Biochemistry and Molecular Biology. Cham: Springer, 2016. P. 191–277.
- Hottiger T., De Virgilio C., Hall M.N., Boller T., Wiemken A. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro // Eur. J. Biochem. 1994. V. 219. P. 187–193.
- Tereshina V.M. Thermotolerance in fungi: the role of heat shock proteins and trehalose // Microbiology. 2005. 74. № 3. P. 247–257.
- Zhao X., Song X., Li Y., Yu C., Zhao Y., Gong M., Shen X., Chen M. Gene expression related to trehalose metabolism and its effect on Volvariella volvacea under low temperature stress // Sci. Rep. 2018. V. 8. P. 1–14.
- Ianutsevich E.A., Danilova O.A., Groza N.V., Kotlova E.R., Tereshina V.M. Heat shock response of thermophilic fungi: membrane lipids and soluble carbohydrates under elevated temperatures // Microbiology. 2016. V. 162. № 6. P. 989–999.
- Iwamoto K., Shiraiwa Y. Salt-regulated mannitol metabolism in algae // Marin. Biotechnol. 2005. V. 7. № 5. P. 407–415.
- Calmes B., Guillemette T., Teyssier L., Siegler B., Pigné S., Landreau A., Iacomi B., Lemoine R., Richomme P., Simoneau P. Role of mannitol metabolism in the pathogenicity of the necrotrophic fungus Alternaria brassicicola // Front. Plant Sci. 2013. V. 4. P. 1–18.
- Kishor P.B.K., Sreenivasulu N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? // Plant Cell Environ. 2014. V. 37. P. 300–311.
- Liang X., Zhang L., Natarajan S.K., Becker D.F. Proline mechanisms of stress survival // Antioxid. Redox Signal. 2013. V. 19. № 9. P. 998–1011.
- Chen C., Dickman M.B. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii // Proceed. Nat. Acade. Sci. 2005. V. 102. № 9. P. 3459–3464.
- Guo S., Yao Y., Zuo L., Shi W., Gao N., Xu H. Enhancement of tolerance of Ganoderma lucidum to cadmium by nitric oxide // J. Basic Microbiol. 2016. V. 6. № 1. P. 36–43.
- Yu Y., Yang Z., Guo K., Li Z., Zhou H., Wei Y., Li J., Zhang X., Harvey P., Yang H. Oxidative damage induced by heat stress could be relieved by nitric oxide in Trichoderma harzianum LTR-2 // Curr. Microbiol. 2015. V. 70. № 4. P. 618–22.
- Asgher M., Per T.S., Masood A., Fatma M., Freschi L., Corpas F.J., Khan N.A. Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress // Environ. Sci. Pollut. Res. 2017. V. 24. № 3. P. 2273–2285.
补充文件
