Influence of biochar on disperse and mineral-associated organic matterin sod-podzolic sandy loamy soil
- Authors: Boitsova L.V.1, Zinchuk Е.G.1
-
Affiliations:
- Agrophysical Research Institute
- Issue: No 2 (2025)
- Pages: 3-9
- Section: Soil Fertility
- URL: https://journals.rcsi.science/0002-1881/article/view/285003
- DOI: https://doi.org/10.31857/S0002188125020015
- EDN: https://elibrary.ru/vbwmqa
- ID: 285003
Cite item
Abstract
In a four-year field experiment, the effect of applying biochar at a dose of 20 t/ha on the content of total organic carbon (TOC), dispersed pool carbon, carbon of mineral-associated organic matter and carbon of the clay fraction of the soil (Cclay) was studied. The field experiment was carried out at the Agrophysical Station of the Menkovo Experimental Station (Leningrad Region). The agricultural plot is occupied by sod-podzolic sandy loamy soil, which differed in the degree of cultivation: medium cultivated (MC) and highly cultivated (HC). Experiment scheme: control (without biochar) and soil with biochar at a dose of 20 t/ha. The content of Corg was determined using the Tyurin method. Isolation of the dispersed pool (POM) and mineral-associated pool (MAOM) was carried out according to the following procedure. 30 ml of sodium hexametaphosphate solution (Na6P6O18) (5 g/l) was added to a soil sample weighing 10 g, passed through a sieve with 2 mm mesh, then shaken on a shaker for 15 hours (speed 180 rpm). The resulting suspension was passed through a sieve with a hole diameter of 0.053 mm. The POM fraction was collected on a sieve, and the MAOM fraction was collected under the sieve. Isolation of the clay fraction of the soil was carried out by sedimentation after treating the samples with ultrasound. As a result of a 4-year experiment, when biochar was added, there was an increase in Corg content in medium cultivated soil by 2.8%, in highly cultivated soil by 21.3%. An increase in the mass of POM in the variant with biochar of medium cultivated soil by 8% was observed; in highly cultivated soil with biochar, on the contrary, a decrease in the POM content by 4% was observed, compared to the control. Biochar contributed to increasing the carbon content of the dispersed pool. The carbon content in the dispersed pool of MC soil increased by 15%, and of HC soil by 20.8%, compared to the control. The addition of biochar led to a decrease in the mass of the MAOM pool in the 4th year of the study in medium cultivated soil by 17.6%, and an increase in its content in highly cultivated soil by 16.5%. Biochar contributed to a decrease in the carbon content in the MAOM pool in MC soil by 20.8%, and an increase in its content in HC soil by 25.5%, compared to the control option. Biochar contributed to an increase in the content Cclay in terms of soil weight in medium cultivated soil by 4%, in highly cultivated soil by 6.8%. In the fourth year of the experiment, the effect of biochar weakened.
Full Text

About the authors
L. V. Boitsova
Agrophysical Research Institute
Author for correspondence.
Email: larisa30.05@mail.ru
Russian Federation, Grazhdansky prosp. 14, St. Petersburg 195220
Е. G. Zinchuk
Agrophysical Research Institute
Email: larisa30.05@mail.ru
Russian Federation, Grazhdansky prosp. 14, St. Petersburg 195220
References
- Chatterjee R., Sajjadi B., Chen W.-Y., Mattern D.L., Hammer N., Raman V., Dorris A. Effect of pyrolysis temperature on physics-chemical properties and acoustic-based amination of biochar for efficient CO2 adsorption // Front. Energy Res. 2020. V. 8. Art. 85. doi: 10.3389/fenrg.2020.00085
- Lavallee J.M., Soong J.L., Cotrufo M.F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century // Global Change Biol. 2020. V. 26 (1). P. 261–273. doi: 10.1111/gcb.14859
- Meng Yu. G., Tong J., Xiao Ri H., Jin Feng Y. Effects of applying biochar–based fertilizer and biochar on organic carbon fractions and contents of brown soil // J. Sci. Agricult. Sinica. 2018. V. 51. Iss. 11. P. 2126–2135. doi: 10.3864/j.issn.0578-1752.2018.11.010
- Coopera J., Greenbergb I., Ludwigb B., Hippichb L., Fischerc D., Glaserc B., Kaisera M. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions // Agricult. Ecosyst. Environ. 2020. V. 295. 106882. doi: 10.1016/j.agee.2020.106882
- Shi S., Zhang Q., Lou Y., Du Z., Wang Q., Hu N., Wang Y., Gunina A., Song J. Soil organic and inorganic carbon sequestration by consecutive biochar application: results from a decade field experiment // Soil Use Manag. 2021. V. 37. P. 95–103.
- Zhang R., Qu Z., Liu L., Yang W., Wang L., Li J., Zhang D. Soil respiration and organic carbon response to biochar and their influencing factors // Atmosphere. 2022. V. 13. 2038. DOI: 10.3390/ atmos13122038
- Giannetta B., Plaza C., Galluzzi G., Benavente-Ferraces I., García-Gil J.C., Panettieri M., Gasco´ G., Zaccone C. Distribution of soil organic carbon between particulate and mineral-associated fractions as affected by biochar and its co-application with other amendments // Agricult. Ecosyst. Environ. 2024. V. 360. 108777. doi: 10.1016/j.agee.2023.108777
- Mavi M.S., Singh G., Singh B.P., Sekhon B.S., Choudhary O.P., Sagi S., Berry R. Interactive effects of rice–residue biochar and N-fertilizer on soil functions and crop biomass in contrasting soils // J. Soil Sci. Plant Nutr. 2018. V. 18. № 1. P. 41–59. http://dx.doi.org/10.4067/S0718-95162018005000201
- Demisie W., Liu Z., Zhang M. Effect of biochar on carbon fractions and enzyme activity of red soil // Catena. 2014. V. 121. P. 214–221.
- Tian J., Wanga J., Dippold M., Gao Y., Blagodatskaya E., Kuzyakov Ya. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil // Sci. Total Environ. 2016. V. 556. P. 89–97. doi: 10.1016/j.scitotenv.2016.03.010
- Fernández-Ugalde O., Gartzia-Bengoetxea N., Arostegi J., Moragues L., Arias-González A. Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area // Sci. Total Environ. 2017. V. 587–588. P. 204–213. doi: 10.1016/j.scitotenv.2017.02.121
- Cotrufo M.F., Ranalli M.G., Haddix M.L., Six J., Lugato E. Soil carbon storage informed by particulate and mineral-associated organic matter // Nat. Geosci. 2019. V. 12. P. 989–994. doi: 10.1038/s41561-019-0484-6
- Kalu S., Seppänen A., Mganga K.Z., Sietiö O.-M., Glaser B., Karhu K. Biochar reduced the mineralization of native and added soil organic carbon: evidence of negative priming and enhanced microbial carbon use efciency // Biochar. 2024. V. 6. Art. 7. doi: 10.1007/s42773-023-00294-y
- Sun Q., Yang X., Bao Z., Gao J., Meng J., Han X., Lan Y., Liu Z., Chen W. Responses of microbial necromass carbon and microbial community structure to straw- and straw-derived biochar in brown earth soil of Northeast China // Front. Microbiol. 2022. V. 13. Art. 967746. doi: 10.3389/fmicb.2022.967746
- Qianjin C., Min L., Zhongsheng Z. Effects of biochar application on soil organic carbon in degraded saline-sodic wetlands of Songnen Plain, Northeast China // Chin. Geograph. Sci. 2021. V. 31(5). P. 877−887. DOI: 10.1007/ s11769-021-1232-6
- Jiang M., Li C., Gao W., Cai K., Tang Y., Cheng J. Comparison of long-term effects of biochar application on soil organic carbon and its fractions in two ecological sites in karst regions // Geoderma Region. 2022. V. 28. e00477. doi: 10.1016/j.geodrs.2021.e00477 URL: https://www.sciencedirect.com/science/article/pii/S235200942100122X
- Моисеев К.Г., Рижия Е.Я., Бойцова Л.В., Зинчук Е.Г., Гончаров В.Д. Корректировочные работы по крупномасштабному почвенному картографированию Меньковского филиала Агрофизического института Россельхозакадемии // Агрофизика. 2013. № 1. С. 30–36.
- Бойцова Л.В., Рижия Е.Я., Москвин М.А. Содержание минеральных форм азота в дерново-подзолис- той супесчаной почве разной степени окультуренности при внесении в нее биоугля // Агрохимия. 2021. № 11. С. 25–32.
- Доспехов Б.А. Методика полевого опыта. М.: Колос, 1979. 419 с.
- Растворова О.Г., Андреев Д.П., Гагарина Э.И., Касаткина Г.А., Федорова Н.Н. Химический анализ почв. СПб.: СПбГУ, 1995.
- Cambardella C.A., Elliott E.T. particulate soil organic-matter changes across a grassland cultivation sequence // Soil Sci. Soc. Amer. J. 1992. V. 56. № 3. P. 777–783. doi: 10.2136/sssaj1992.03615995005600030017x
- Семенов В.М., Лебедева Т.Н., Лопес де Гереню В.О., Овсепян Л.А., Семенов М.В., Курганова И.Н. Пулы и фракции органического углерода в почве: структура, функции и методы определения // Почвы и окруж. среда. 2023. Т. 6(1). e199. doi: 10.31251/pos.v6i1.199
- Бойцова Л.В., Непримерова С.В., Зинчук Е.Г. Влияние минералогического состава почв на стабилизацию в них органического углерода // Агрофизика. 2019. № 4. С. 1–8. DOI: 10.25695/ AGRPH.2019.04.01
- Pokharel P., Ma Z., Chang S.X. Biochar increases soil microbial biomass with changes in extra- and intracellular enzyme activities: a global meta-analysis // Biochar. 2020. V. 2. P. 65–79. doi: 10.1007/s42773-020-00039-1
- Chen H.X., Du Z.L., Guo W., Zhang Q.Z. Effects of biochar amendment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the North China Plain // Chinese. 2011. V. 22(11). 2930–4. PMID: 22303671 URL: https://pubmed.ncbi.nlm.nih.gov/22303671/
- Akpinar D., Tian J., Shepherd E., Imhoff P.T. Impact of wood-derived biochar on the hydrologic performance of bioretention media: effects on aggregation, root growth, and water retention // J. Environ. Manage. 2023. V. 339. 117864. doi: 10.1016/j.jenvm.an.2023.117864
- Weng Z., Van Zwieten L., Singh B.P., Tavakkoli E., Joseph S., Macdonald L.M., Rose T.J., Rose M.T., Kimber S.W.L., Morris S., Cozzolino D., Araujo J.R, Archanjo B.S., Cowie A. Biochar built soil carbon over a decade by stabilizing rhizodeposits // Nat. Clim. Change. 2017. V. 7. P. 371–376. doi: 10.1038/nclimate3276
- Бойцова Л.В. Органическое вещество и его легкая фракция в профиле дерново-подзолистой супесчаной почвы // Агрофизика. 2015. № 3. С. 1–8.
- Zimmerman A.R., Gao B., Ahn M.-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils // Soil Biol. Biochem. 2011. V. 43. P. 1169–1179. doi: 10.1016/j.soilbio.2011.02.005
- Yu Z., Ling L., Singh B.P., Luo Y., Xu J. Gain in carbon: deciphering the abiotic and biotic mechanisms of biochar-induced negative priming effects in contrasting soils // Sci. Total Environ. 2020. V. 746. 141057. doi: 10.1016/j.scitotenv.2020.141057
- Bernard L., Basile-Doelsch I., Derrien D., Fanin N., Fontaine S., Guenet B., Karimi B., Marsden C., Maron P.-A. Advancing the mechanistic understanding of the priming effect on soil organic matter mineralization // Funct. Ecol. 2022. V. 36. P. 1355–1377. doi: 10.1111/1365-2435.14038
Supplementary files
