Carbon sequestration by ecosystems of cold territories of Transbaikalia
- Authors: Chimitdorzhieva G.D.1, Chimitdorzhieva E.O.1, Milkheev E.Y.1, Tsybenov Y.B.1, Korsunova T.D.1
-
Affiliations:
- Institute of General and Experimental Biology SB RAS
- Issue: No 12 (2024)
- Pages: 48-53
- Section: Agroecology
- URL: https://journals.rcsi.science/0002-1881/article/view/273586
- DOI: https://doi.org/10.31857/S0002188124120074
- EDN: https://elibrary.ru/vvtelu
- ID: 273586
Cite item
Abstract
In the Baikal region, the continuous cryolithozone occupies ≈15, the transitional intermittent zone with Talikov islands – 30, the transitional island zone – 45, taliki with a continuous area – 10%. Attention is drawn to the dominance of the transition band, which is characterized by unstable thermodynamic equilibrium. High-temperature permafrost is easily degraded by technoconversion of external heat exchange conditions: removal of ground covers (organogenic layer and snow cover), deforestation, plowing, fires, etc. These circumstances increase the natural hazards and risks in the region. In this regard, the territory of Transbaikalia is of great interest, being in the permafrost zone and near its southern border, on the one hand, and with increased warming rates in recent decades, on the other. The continentality and severity of the climate in Buryatia are much more pronounced than in neighboring single-latitude regions of Russia. The southern boundary of the cryolithozone stretches almost throughout the entire territory of the republic, within which a whole range of landscapes is distinguished – from automorphic forest ecosystems to widespread, due to the high proportion of lakes and swamps, hydromorphic landscapes formed under the active influence of permafrost, as well as dry-steppe. The implementation of the Kyoto Protocol on Stabilization of Greenhouse Gas (GHG) Concentrations in the Atmosphere requires a quantitative assessment of spatiotemporal changes in terrestrial carbon sinks. Identifying areas with high potential and strategies for managing sequestration of atmospheric carbon dioxide by ecosystems is an important task and there is great uncertainty about the actual estimates of carbon reservoirs and how they may be affected by climate change. In the current conditions, we consider the study of the patterns of functioning of the soil and plant carbon reservoir in Transbaikalia to be timely and relevant.
Keywords
Full Text

About the authors
G. D. Chimitdorzhieva
Institute of General and Experimental Biology SB RAS
Author for correspondence.
Email: galdorgj@gmail.com
Russian Federation, ul. Sakhyanova 6, Ulan-Ude 670047
E. O. Chimitdorzhieva
Institute of General and Experimental Biology SB RAS
Email: galdorgj@gmail.com
Russian Federation, ul. Sakhyanova 6, Ulan-Ude 670047
E. Y. Milkheev
Institute of General and Experimental Biology SB RAS
Email: galdorgj@gmail.com
Russian Federation, ul. Sakhyanova 6, Ulan-Ude 670047
Yu. B. Tsybenov
Institute of General and Experimental Biology SB RAS
Email: galdorgj@gmail.com
Russian Federation, ul. Sakhyanova 6, Ulan-Ude 670047
Ts. D. Korsunova
Institute of General and Experimental Biology SB RAS
Email: galdorgj@gmail.com
Russian Federation, ul. Sakhyanova 6, Ulan-Ude 670047
References
- Moinet G.Y.K., Amundson R., Galdos M.V., Grace P.R., Haefele S.M., Hijbeek, R., Van Groenigen J.W., Van Groenigen K.J., Powlson D.S. Climate change mitigation through soil carbon sequestration in working lands: A reality check // Glob. Change Biol. 2024. V.30. P. e17010. https://doi.org/10.1111/gcb.17010
- Абакумов Е.В., Поляков В.И., Чуков С.Н. Подходы и методы изучения органического вещества почв карбоновых полигонов России (обзор) // Почвоведение. 2022. № 7. С. 773–786. https://doi.org/10.31857/S0032180X22070024
- Кудеяров В.Н. Секвестрация углерода в почве: факты и проблемы (аналитический обзор) // Усп. совр. биол. 2022. Т. 142. № 6. С. 545–559. https://doi.org/10.31857/S0042132422060047
- Nazir M.J., Li G., Nazir M.M., Zulfiqar F., Siddique K.H.M., Iqbal B., Du D. Harnessing soil carbon sequestration to address climate change challenges in agriculture // Soil Till. Res. 2024. V. 237. P. 105959. https://doi.org/10.1016/j.still.2023.105959
- Jandl R., Lindner M., Vesterdal L., Bauwens B., Baritz R., Hagedorn F., Byrne K.A. How strongly can forest management influence soil carbon sequestration? // Geoderma. 2007. V. 137. № 3–4. P. 253–268.
- Швиденко А.З., Щепащенко Д.Г. Углеродный баланс лесов России // Сибир. лесн. журн. 2014. № 1. С. 69–92.
- Lenton T.M., Held H., Kriegler E., Hall J.W., Lucht W., Rahmstorf S., Schellnhuber H.J. Tipping elements in the earth climate system // Proc. Nat. Acad. Sci. USA. 2008. V. 105(6). P. 1786–1793. https://doi.org/10.1073/pnas.0705414105
- Чимитдоржиева Г.Д. Органическое вещество холодных почв. Улан-Удэ: БНЦ СО РАН, 2016. 387 с.
- Чимитдоржиева Э.О. Запасы углерода в постагрогенных сухостепных почвах Западного Забайкалья // Арид. экосист. 2017. Т. 23. № 3(72). С. 59–65.
- Уфимцева К.А. Степные и лесостепные почвы Бурятской АССР. М.: Изд-во АН СССР, 1960. 151 с.
- Ногина Н.А. Почвы Забайкалья. М.: Наука, 1964. 312 с.
- Ишигенов И.А. Агрохимическая характеристика почв Бурятии. Улан-Удэ: Бурят. кн. изд-во, 1972. 210 с.
- Цыбжитов Ц.Х., Убугунова В.И. Генезис и география таежных почв бассейна озера Байкал. Улан- Удэ: Бурят. кн. изд-во, 1992. 237 с.
- Цыбжитов Ц.Х., Цыбикдоржиев Ц.Ц., Цыбжитов А.Ц. Почвы бассейна озера Байкал. Т. 1. Генезис, география и классификация каштановых почв. Новосибирск: Наука, СО РАН, 1999. 128 с.
- Балсанова Л.Д., Гынинова А.Б., Цыбикдоржиев Ц.Ц., Гочиков Б-М.Н., Шахматова Е.Ю. Генетические особенности почв бассейна озера Котокельское (Восточное Прибайкалье) // Почвоведение. 2014. № 7. С. 1–9.
- Сымпилова Д.П., Бадмаев Н.Б. Почвообразование в ландшафтах тайги и степи Селенгинского среднегорья (Западное Забайкалье) // Почвоведение. 2019. № 2. С. 140–151.
- Gyninova A.B., Badmaev N.B., Tsybenov Yu.B., Gonchikov B.N., Mangataev A.Ts., Kulikov A.I., Sympilova D.P. Soils of the Darkhitui catena in the southern Vitim Plateau and their micromorphological features // IOP Conf. Series: Earth Environ. Sci. 2021. № 862. P. 012068. https://doi.org/10.1088/1755–1315/862/1/012068
- Аринушкина Е.В. Руководство по химическому анализу почв. М.: Изд-во МГУ, 1975. 488 с.
- Куликов А.И., Куликов М.А., Смирнова И.И. О глубине протаивания почв при изменениях климата // Вестн. Бурят. ГСХА им. В.Р. Филиппова. 2009. № 1(14). С. 121–126.
- Ипполитов И.И., Кабанов М.В., Логинов С.В. Пространственные и временные масштабы наблюдаемого потепления в Сибири // Докл. РАН. 2007. Т. 412. № 6. С. 814–817.
- Поднебесных Н.В., Ипполитов И.И. Крупномасштабная атмосферная циркуляция над Сибирью в конце ХХ – начале XXI веков: сравнение данных, полученных на основе приземных синоптических карт и реанализа // Фундамент. и прикл. климатолог. 2019. Т. 2. С. 34–44.
- Груза Г.В., Ранькова Э.Я., Самохина О.Ф. Особенности температурного режима у поверхности земного шара в 2020 году // Фундамент. и прикл. климатолог. 2021. Т. 7. № 2. С. 26–56.
- Смирнова И.И., Куликов А.И., Куликов М.А. Термическое состояние деятельного слоя в криолитозоне байкальского региона в контексте глобального потепления // Вестн. ВСГУТУ. 2012. № 4(39). С. 227–233.
- Убугунов Л.Л., Куликов А.И. Глобальное потепление и его некоторые экосистемные следствия // Вестн. Бурят. НЦ СО РАН. 2013. № 4(12). С. 243–258.
- https://www.eastrussia.ru/news/pogloshchenie-ugleroda-v-dfo-vyshe-vsego-v-lesakh-zabaykalya/
- https://roslesinforg.ru › news
Supplementary files
