Photosynthetic and Carbon Sequestering Ability of Safflower Leucea and Accumulation of Organic Carbon in Sod-Podzolic Soil

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

According to the content of photosynthesis pigments, the most active period of photosynthetically active radiation absorption by the leaves of Leucea safflower during the growing season was revealed. From the moment of full regrowth to flowering, the amount of chlorophylls a and b in the leaves was 6.2–8.5 mg/g of dry weight, carotene – 3–4 times less. During photosynthesis, the carbon content in the leaves of Leucea safflower practically did not change and amounted to 39.5–42.5%. The mass fraction of the main product of photosynthesis, sugars, increased from the regrowth phase to seed formation from 4.0 to 11.8%. During the period of active growth, the nitrogen content in the leaves of the leucea was 1.3–1.6, phosphorus – 1.1–1.6, potassium – 4.4–5.1%. After harvesting the safflower leucea of the 14th year of life, a high amount of сrop and root residues (CRR) was determined in the sod-podzolic soil – 13.7–17.3 t/ha. The amount of carbon absorbed during photosynthesis was 6.8–11.5 t C/ha (24.3–41.3 t CO2/ha), depending on the experiment variant, for natural phytocenosis this indicator was equal to 2.4 t C/ha (or 8.6 t CO2/ha) during the growing season. The organic carbon content under the safflower leucea of the 14th year of life in the 0–20 cm soil layer increased relative to the initial level by 3.6% in the version without fertilizers, by 15.1% in the N60P60K60 variant, and in the 20–40 cm layer by 8.8–42.6%, respectively. Relative to the virgin analogue, the carbon content in the 0–20 cm layer was 15.2–28.0 higher, in the 20–40 cm layer – 25.0–64.4%, depending on the experiment variant, which indicated the deposition of carbon in the form of humic substances due to its storage in deeper soil layers.

全文:

受限制的访问

作者简介

N. Zavyalova

Perm Federal Research Center of the Ural Branch of the RAS

编辑信件的主要联系方式.
Email: nezavyalova@gmail.com
俄罗斯联邦, ul. Kultury 12, Perm region, d. Lobanovo 614532

G. Maysak

Perm Federal Research Center of the Ural Branch of the RAS

Email: nezavyalova@gmail.com
俄罗斯联邦, ul. Kultury 12, Perm region, d. Lobanovo 614532

I. Kazakova

Perm Federal Research Center of the Ural Branch of the RAS

Email: nezavyalova@gmail.com
俄罗斯联邦, ul. Kultury 12, Perm region, d. Lobanovo 614532

O. Ivanova

Perm Federal Research Center of the Ural Branch of the RAS

Email: nezavyalova@gmail.com
俄罗斯联邦, ul. Kultury 12, Perm region, d. Lobanovo 614532

参考

  1. Калов Р.О., Гакаев Р.А. Место природных травяных экосистем в глобальном углеродном балансе // Вестн. Чечен. гос. ун-та. 2022. № 6. С. 50–54.
  2. Сычев В.Г., Шевцова Л.К., Мерзлая Г.Е. Исследование динамики и баланса гумуса при длительном применении систем удобрения на основных типах почв // Агрохимия. 2018. № 2. С. 3–16. https://doi.org/10.7868/S0002188118020011
  3. Кудеяров В.Н. Дыхание почв и биогенный сток углекислого газа на территории России (Аналит. обзор) // Почвоведение. 2018. № 6. С. 643–658. https://doi.org/10.1134/S1064229318060091
  4. Базилевич Н.И. Биологическая продуктивность экосистем Северной Евразии. М: Наука, 1993. 293 с.
  5. Шарков И.Н., Антипина П.В. Некоторые аспекты углерод-секвестрирующей способности пахотных почв // Почвы и окр. среда. 2022. Т. 5. № 2. С. 1–7.
  6. Кудеяров В.Н. Почвенно-биохимические аспекты состояния земледелия в Российской Федерации // Почвоведение. 2019. № 1. С. 109–121. https://doi.org/10.1134/S1064229319010095
  7. Эседулаев С.Т. Многолетние травы и их смеси – важнейший фактор повышения плодородия почв и продуктивности пашни в Верхневолжье // Плодородие. 2022. № 6. С. 59–63. https://doi.org/10.25680/S19948603.2022.129.16
  8. Тарчевский И.А., Андрианова Ю.Е. Содержание пигментов как показатель мощности развития фотосинтетического аппарата у пшеницы // Физиология растений. 1980. Т. 27. Вып. 2. С. 341–348.
  9. Кумаков В.А. Физиологическое обоснование моделей сортов пшеницы. М.: Агропромиздат, 2003. 270 с.
  10. Мамаева Г.Г. Сравнительная оценка количества углерода, поступившего в почву из корневых или послеуборочных остатков при нулевой и традиционной обработках почвы (США) // Экол. безопасность в АПК. Реферат. журн. 2005. № 32. С. 390.
  11. Артемьева Е.П., Валдайских В.В., Радченко Т.А., Карпухин М.Ю. Перспективы выращивания высокотравных растений в качестве углероддепонирующих культур // Аграрн. вестн. Урала. 2022. № 12(227). С. 2‒10. https://doi.org/10.32417/1997-4868-2022-227-12-2-10
  12. Лобков В.Т., Наполова Г.В. Способ определения хлорофилла в растениях гречихи: Пат. 2244916 РФ // Б.И. 2005. № 2. С. 1–4.
  13. Доспехов Б.А., Васильев И.П., Туликов А.М. Практикум по земледелию. М.: Агропромиздат, 1987. 383 с.
  14. Матолинец Д.А. Кормовая продуктивность левзеи сафлоровидной при различных приемах возделывания в Среднем Предуралье: Автореф. дис. … канд. с.-х. наук. Самара, 2021. 18 с.
  15. Курсанов А.Л. Транспорт ассимилятов в растении. М.: Наука, 1976. 646 с.
  16. Никитин С.Н. Фотосинтетическая деятельность растений в посевах и динамика ростовых процессов при применении биологических препаратов // Усп. совр. естествознания. 2017. № 1. С. 33–38.
  17. Ничипорович А.А. Физиология фотосинтеза и продуктивность растений. Физиология фотосинтеза. М., 1982. С. 7–34.
  18. Когут Б.М., Семенов В.М., Артемьева З.С., Данченко Н.Н. Дегумификация и почвенная секвестрация углерода // Агрохимия. 2021. № 5. С. 3–13. https://doi.org/10.31857/S0002188121050070
  19. Сычев В.Г., Налиухин А.Н. Изучение потоков углерода и азота в длительных полевых опытах Геосети с целью снижения выбросов парниковых газов и повышения депонирования диоксида углерода агроценозами // Плодородие. 2021. № 6. С. 38–41. https://doi.org/10.25680/S19948603.2021.123.10
  20. Anderson J.P.E., Domsch K.H. A physiological method for the quantitative measurement of microbial biomass in soils // Soil Biol. Biochem. 1978. V. 10. № 3. P. 215–221.
  21. Hassink J. The capacity of soils to preserve organic C and N by their association with clay and silt particles // Plant and Soil. 1997. V. 191. P. 77–87. https://doi.org/10.1023/A:1004213929699)
  22. Schlesinger W.H., Andrews J.A. Soil respiration and the global carbon cycle // Biogeochemistry. 2000. V. 48. P. 7–20.
  23. Майсак Г.П., Авдеев Н.В., Старцева А.В., Иванова К.Ю. Накопление органического вещества и элементов минерального питания при длительном возделывании многолетних трав на дерново-подзолистой почве Пермского края // Земледелие. 2023. № 7. С. 18–21. https://doi.org/10.24412/0044-3913-2023-7-1-48
  24. Благовещенский Г.В., Конанчук В.В., Тимошенко С.М. Углеродная секвестрация в травяных экосистемах // Кормопроизводство. 2019. № 9. С. 17–21.
  25. Суховеева О.Э. Поступление органического углерода в почву с послеуборочными остатками сельскохозяйственных культур // Почвоведение. 2022. № 6. С. 737–746. https://doi.org/10.31857/S0032180X22060120
  26. Столбовой В.С. Регенеративное земледелие и смягчение изменений климата // Достиж. науки и техн. АПК. 2020. Т. 34. № 7. С. 19–26. https://doi.org/10.24411/0235-2451-2020-10703
  27. Завьялова Н.Е. Углеродпротекторная емкость дерново-подзолистой почвы естественных и агроэкосистем Предуралья // Почвоведение. 2022. № 8. С. 1046–1055. https://doi.org/10.1134/S1064229322080166

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The content of nitrogen (a), phosphorus (b) and potassium (c) in the leaves of Leucea safflower during various periods of vegetation.

下载 (120KB)
3. Fig. 2. Organic carbon content in sod-podzolic soil (average for 2022-2023).

下载 (73KB)

版权所有 © The Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».