CO2-emission from arable chernozems of western Nransbaikalia

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

CO2-Emissions from agrochernozems of dispersed carbonate Tugnui basin and agrochernozems of quasi-clay Yeravninsky basin of western Transbaikalia were studied. To compare CO2-emissions from soils, the virgin land variants of the same name are taken. The aim of the study is to quantify and comparatively evaluate the production of carbon dioxide from arable chernozems with contrasting temperature and moisture conditions. The measurement of CO2 fluxes from the soil was carried out by a closed chamber method with a portable infrared CO2 gas analyzer AZ 7752 (AZ Instrument Corp., Taiwan). CO2-emissions were largely dependent on hydrothermal conditions. Its minimum at the beginning of the growing season was associated with the effect of low soil temperatures, the maximum was more often noted after precipitation. The peaks of CO2-emissions coincided with an increase in temperature and humidity from June to early August, in conditions of a lack of readily available moisture, and were also associated with a humidification regime. The limiting factor of the CO2 flux for quasi-clay chernozems was the soil temperature, for dispersed carbonate chernozems – humidity. It has been established that the total CO2-emission in arable soils is significantly less than in virgin soils, this is explained by the peculiarities of the agrogenic environment. Arable soils are warmer in summer, and they cool down more and deeper in winter. The transformation of the water regime occurs in the direction of reducing moisture and increasing its contrast during the warm period. The total carbon loss index varies in a series: dispersed-carbonate chernozem → quasi-clay chernozem, virgin soil → arable land.

全文:

受限制的访问

作者简介

E. Chimitdorzhieva

Institute of General and Experimental Biology SB RAS

编辑信件的主要联系方式.
Email: erzhena_ch@mail.ru
俄罗斯联邦, 670047, Ulan-Ude, ul. Sakhyanovoy 6

Yu. Tsybenov

Institute of General and Experimental Biology SB RAS

Email: erzhena_ch@mail.ru
俄罗斯联邦, 670047, Ulan-Ude, ul. Sakhyanovoy 6

G. Chimitdorzhieva

Institute of General and Experimental Biology SB RAS

Email: erzhena_ch@mail.ru
俄罗斯联邦, 670047, Ulan-Ude, ul. Sakhyanovoy 6

参考

  1. Ларионова А.А., Курганова И.Н., Лопес де Гереню В.О., Золотарева Б.Н., Евдокимов И.В., Кудеяров В.Н. Эмиссия диоксида углерода из агросерых почв при изменении климата // Почвоведение. 2010. № 2. С. 186–195.
  2. Заварзин Г.А., Кудеяров В.Н. Почва как главный источник углекислоты и резервуар органического углерода на территории России // Вестн. РАН. 2006. Т. 76. № 1. С. 14–29.
  3. Rustad L.E., Huntington T.G., Boone R.D. Controls on soil respiration: Implications for climate change // Biogeochemistry. 2000. V. 48. P. 1–6. https://doi.org/10.1023/A:1006255431298
  4. Наумов А.В. Дыхание почвы: составляющие, экологические функции, географические закономерности. Новосибирск: Изд-во СО РАН, 2009. 207 с.
  5. Post W.M., Mann L.K. Changes in soil organic car’ bon and nitrogen as a result of cultivation // Soils Greenhouse Еffect / Еd. A.F. Bouwman. N.Y.: John Wiley, 1990. P. 401–406.
  6. Davidson E.A., Ackerman I.L. Changes in carbon inventories following cultivation of previously untilled soils // Biogeochemistry. 1993. V. 20. P. 161–193.
  7. Титлянова А.А., Наумов А.В. Потери углерода из почв Западной Сибири при их сельскохозяйственном использовании // Почвоведение. 1995. № 11. С. 1357–1362.
  8. Курганова И.Н., Лопес Д.Г., Ипп С.Л., Каганов В.В., Хорошаев Д.А., Рухович Д.И., Сумин Ю.В., Дурманов Н.Д., Кузяков Я.В. Пилотный карбоновый полигон в России: анализ состояния почв и запасы углерода в лесной растительности // Почвы и окруж. среда. 2022. Т. 5. № 2. e169. https://doi.org/10.31251/pos.v5i2.169
  9. Кудеяров В.Н., Курганова И.Н. Дыхание почв России: анализ базы данных, многолетний мониторинг, общие оценки // Почвоведение. 2005. № 9. С. 1112–1121.
  10. Карелин Д.В., Замолодчиков Д.Г. Улеродный обмен в криогенных экосистемах. М.: Наука, 2008. 344 с.
  11. Классификация и диагностика почв СССР. М.а: Колос, 1977. 224 с.
  12. Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
  13. IUSS Working Group WRB. International Union of Soil Sciences (IUSS), Vienna, Austria. 2022. Available online: https://wrb.isric.org/files/WRB_fourth_edition_2022–12–18.pdf (accessed 27 September 2023).
  14. Карелин Д.В., Почикалов А.В., Замолодчиков Д.Г., Гитарский М.Л. Факторы пространственно-временнóй изменчивости потоков СО2 из почв южнотаежного ельника на Валдае // Лесоведение. 2014. № 4. С. 56–66.
  15. Дугаров В.И., Куликов А.И. Агрофизические свойства мерзлотных почв. Новосибирск: Наука, СО, 1990. 255 с.
  16. Худяков О.И. Климат генетических горизонтов и его влияние на эмиссию СО2 мерзлотных и холодных почв // Эмиссия и сток парниковых газов на территории Северной Евразии. Пущино: ОНТИ ПНЦ РАН, 2004. С. 106–110.
  17. Волотовская Т.Н., Саввинов Г.Н. Биологическая активность мерзлотных лугово-черноземных почв долины р. Амга // Проблемы гидротермики мерзлотных почв. Новосибирск: Наука, СО, 1988. С. 37–40.
  18. Мендешев А., Жердева С.В. Динамика выделения СО2 орошаемыми степными почвами Северного Казахстана // Изв. АН КазССР. Сер. биол. 1989. № 1. С. 77–79.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dynamics of CO2 emission from chernozems during the 2018–2019 growing season. Chq – quasi-gley chernozem, Chdc – dispersed-carbonate chernozem, AChq – quasi-gley agrochernozem, AChdc – dispersed-carbonate agrochernozem, the same in Fig. 2, 3; 1–1st decade, 2–2nd decade, 3–3rd decade.

下载 (210KB)
3. Fig. 2. Humidity and temperature of chernozems during the growing season of 2018–2019.

下载 (182KB)
4. Fig. 3. Total emission of carbon dioxide from chernozems during the 2018–2019 growing season.

下载 (47KB)

版权所有 © The Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».