Aqueous Suspension of Porous SiO2 Nanoparticles, Containing 9,10-diphenylanthracene, in Agrophotonics
- 作者: Gareev B.M.1, Sharipov G.L.1, Lastochkina O.V.2
-
隶属关系:
- Institute of Petrochemistry and Catalysis – a separate structural subdivision of the Ufa Federal Research Center of the RAS
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences
- 期: 编号 10 (2023)
- 页面: 66-74
- 栏目: Agroecology
- URL: https://journals.rcsi.science/0002-1881/article/view/147854
- DOI: https://doi.org/10.31857/S000218812310006X
- EDN: https://elibrary.ru/TKWBDS
- ID: 147854
如何引用文章
详细
An aqueous colloidal suspension of porous silicon dioxide nanoparticles containing an organic phosphor 9,10-diphenylanthracene was obtained by ultrasonic dispersion. The average size of suspension nanoparticles is 15–25 nm. This suspension has a characteristic absorption spectrum for diphenylanthracene in the region from 345 to 420 nm and a photoluminescence spectrum in the region from 400 to 550 nm. The resulting suspension was used for irrigation when growing bulbous plants (lilies and gladiolus) under conditions of a short light period with additional lighting with LEDs-based phytolamps with red and blue spectra. It has been established that the use of this suspension with nanoparticles that enter plants as an artificial photosynthetic pigment accelerates the growth of bulbous plants by an average of 15–20% compared to control samples under the same lighting conditions.
作者简介
B. Gareev
Institute of Petrochemistry and Catalysis – a separate structural subdivision of the Ufa Federal Research Center of the RAS
编辑信件的主要联系方式.
Email: gareev-bulat@yandex.ru
Russia, 450075, Ufa, prosp. Oktyabrya 141
G. Sharipov
Institute of Petrochemistry and Catalysis – a separate structural subdivision of the Ufa Federal Research Center of the RAS
Email: gareev-bulat@yandex.ru
Russia, 450075, Ufa, prosp. Oktyabrya 141
O. Lastochkina
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences
Email: gareev-bulat@yandex.ru
Russia, 450054, Ufa, prosp. Oktyabrya 71
参考
- Singh S., Agrawal S.B., Agrawal M. Role of light in plant development // Inter. J. Plant Environ. 2015. V. 53. P. 43–56.
- Kyriacou M.C., Rouphael Y., Di Gioia F., Kyratzis A., Serio F., Renna M., De Pascale S., Santamaria P. Micro-scale vegetable production and the rise of microgreens // Trend. Food Scitechnol. 2016. V. 57. P. 103–115.
- Kim Y.J., Kim H.M., Jeong B.R., Lee H.J., Hwang S.J. Iceplant growth and phytochemical concentrations are affected by light quality and intensity of monochromatic light–emitting diodes // Hortic. Environ. Biot. 2018. V. 59. P. 529–536.
- Monostori I., Heilmann M., Kocsy G., Rakszegi M., Ahres M., Altenbach S.B., Szalai G., Pál M., Toldi D., Sarkadi L.S., Harnos N., Galiba G., Darko E. LED lighting – modification of growth, metabolism, yield and flour composition in wheat by spectral quality and intensity // Front. Plant Sci. 2018. V. 9. P. 605.
- Deepika A., Ankit S.S., Amarjeet S. Dark-induced hormonal regulation of plant growth and development // Front. Plant Sci. 2020. V. 11. 581666.
- Евлаков П.М., Бычков А.А., Заплетин В.Ю. Воздействие светодиодных и натриевых облучателей на рост и развитие растений, выращенных методом клонального микроразмножения (in vitro) // Вестн. ВГУ. Сер.: хим., биол., фармация. 2020. № 4. С. 43–49.
- Kozai T., Niu G., Takagaki M. Plant factory: an indoor vertical farming system for efficient quality food production. USA: Academic Press, 2015. 438 p.
- Lastochkina O., Aliniaeifard S., Seifikalhor M., Bosacchi M., Maslennikova D., Lubyanova A. Novel approaches for sustainable horticultural crop production: advances and prospects // Horticulturae. 2022. V. 8. P. 910.
- Tennessen D.J., Singsaas E.L., Sharkey T.D. Light-emitting diodes as a light source for photosynthesis research // Photosynthes. Res. 1994. V. 39. P. 85–92.
- Kim S.J., Hahn E.J., Heo J.W., Paek K.Y. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro // Sci. Horticulturae. 2004. V. 101. P. 143–151.
- Breive K., Tamulaitis G., Duchovskis P., Bliznikas Z., Ulinskaite R., Brazaityte A., Novickovas A., Zukauskas A. High-power light-emitting diode based facility for plant cultivation // J. Physic. D: Appl. Physic. 2005. V. 38. P. 3182–3187.
- Bayat, L., Arab M., Aliniaeifard S., Seif M., Lastochkina O., Li T. Effects of growth under different light spectra on the subsequent high light tolerance in rose plants // AoB Plants. 2018. V. 10. № 5. P. 52.
- Samuolienė G., Viršilė A., Brazaitytė A., Jankauskienė J., Sakalauskienė S., Vaštakaitė V., Novickovas A., Viske-liene A., Sasnauskas A., Duchovskis P. Blue light dosage affects carotenoids and tocopherols in microgreens // Food Chem. 2017. V. 228. P. 50–56.
- Hasan M.M., Bashir T., Ghosh R., Lee S.K., Bae H. An overview of LEDs’ effects on the production of bioactive compounds and crop quality // Molecule. 2017. V. 22. P. 1–12.
- Ferrón-CarrilloCarrillo F., Guil-Guerrero J.L., Gon-zález-Fernández M.J., Lyashenko S., Battafarano F., da Cunha-Chiamolera T.P.L., Urrestarazu M. LED enhances plant performance and both carotenoids and nitrates profiles in lettuce // Plant Foods Human Nutrit. 2021. V. 76. № 2. P. 210–218.
- Paradiso R., Proietti S. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: the state of the art and the opportunities of modern LED systems // J. Plant Growth Regul. 2022. V. 41. P. 742–780.
- Di Q., Li J., Du Y., Wei M., Shi Q., Li Y., Yang F. Combination of red and blue lights improved the growth and development of eggplant (Solanum melongena L.) seedlings by regulating photosynthesis // J. Plant Growth Regul. 2021. V. 40. № 4. P. 1477–1492.
- Rabinowitch E.I., Govindjee G. The role of chlorophyll in photosynthesis // Sci. Amer. 1965. V. 213. № 1. P. 74–83.
- Giraldo J.P., Landry M.P., Faltermeier S.M., McNicholas T.P., Iverson N.M., Boghossian A.A., Reuel N.F., Hilmer A.J., Sen F., Brew J.A., Strano M.S. // Plant nanobionics approach to augment photosynthesis and biochemical sensing // Nature Mater. 2014. V. 13. № 4. P. 400–408.
- Berlman I.B. Handbook of fluorescence spectra of aromatic molecules. N.Y.: Academic Press, 1971. 473 p.
- Sharipov G.L., Abdrakhmanov A.M., Gareev B.M., Tukhbatullin A.A. Porous SiO2 nanoparticles containing ruthenium or sulfur compounds: sonochemical producing and sonoluminescence in aqueous suspensions // Ultrasonics Sonochem. 2020. V. 61. P. 104842.
- Agliullin M.R., Danilova I.G., Faizullin A.V., Amarantov S.V., Bubennov S.V., Prosochkina T.R., Grigor’eva N.G., Paukshtis E.A., Kutepov B.I. Sol-gel synthesis of mesoporous aluminosilicates with a narrow pore size distribution and catalytic activity thereof in the oligomerization of dec-1-ene // Microporous Mesoporous mater. 2016. V. 230. P. 118–127.
- Mokronosova A.T. Small workshop on plant physiology. Moscow: Moscow State University, 1994. 184 p.
- Hedayatifar L., Irani E., Mazarei M., Rasti S., Azar Y.T., Rezakhani A., Mashaghi A., Shayeganfar F., Anvari M., Heydari T., Tabar A.R., Nafari N., Vesaghi M., Asgari R., Tabar M.R.R. Optical absorption and electronic spectra of chlorophylls a and b // RSC Adv. 2016. V. 6. P. 109778–109785.
补充文件
