Combined Effect of PGPR Strains Pseudomonas plecoglossicidA 2,4-D and Humic Substances on the Growth, Content of Photosynthetic Pigments and Phytohormones in Wheat Plants in Drought Conditions
- Authors: Feoktistova A.V.1, Timergalin M.D.1, Rameev T.V.1, Chetverikov S.P.1
-
Affiliations:
- Ufa Institute of biology – Subdivision of the Ufa Federal Research Centre of the RAS
- Issue: No 9 (2023)
- Pages: 28-36
- Section: Plant growth regulators
- URL: https://journals.rcsi.science/0002-1881/article/view/139654
- DOI: https://doi.org/10.31857/S0002188123090065
- EDN: https://elibrary.ru/VEZILD
- ID: 139654
Cite item
Abstract
The aim of the study was to study the effect of bacteria that stimulate plant growth and humic substances on the content of chlorophyll, nitrogen balance index, cytokinin concentration, abscisic acid in wheat plants grown in drought conditions. The accumulation of the raw mass of wheat plants during treatment with a strain of Pseudomonas plecoglossicida 2,4-D bacteria and humic substances with a deficiency of soil moisture is shown. Stimulation of plant growth is associated with the activation of root growth, which led to an increase in the nitrogen balance index and chlorophyll concentration in the treated plants. The detected increase in the concentration of chlorophyll in plants treated with P. plecoglossicida 2,4-D correlated with a decrease in the content of abscisic acid in shoots, and in plants treated with humates – with an increase in cytokinins in shoots. A higher efficiency of plant treatment with a combination of bacteria and humic substances than any of them individually may be associated with the additive effect of these treatments on hormonal balance.
Keywords
About the authors
A. V. Feoktistova
Ufa Institute of biology – Subdivision of the Ufa Federal Research Centre of the RAS
Author for correspondence.
Email: feoktistova.arisha@yandex.ru
Russia, 450054, Ufa, pr. Oktyabrya 69
M. D. Timergalin
Ufa Institute of biology – Subdivision of the Ufa Federal Research Centre of the RAS
Email: feoktistova.arisha@yandex.ru
Russia, 450054, Ufa, pr. Oktyabrya 69
T. V. Rameev
Ufa Institute of biology – Subdivision of the Ufa Federal Research Centre of the RAS
Email: feoktistova.arisha@yandex.ru
Russia, 450054, Ufa, pr. Oktyabrya 69
S. P. Chetverikov
Ufa Institute of biology – Subdivision of the Ufa Federal Research Centre of the RAS
Email: feoktistova.arisha@yandex.ru
Russia, 450054, Ufa, pr. Oktyabrya 69
References
- Ruzzi M., Aroca R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture // Sci. Hortic. 2015. V. 196. P. 124–134. https://doi.org/10.1016/j.scienta.2015.08.042
- Backer R., Rokem J.S., Ilangumaran G., Lamont J., Praslickova D., Ricci E., Subramanian S., Smith D.L. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture // Front. Plant Sci. 2018. V. 9. P. 1473. https://doi.org/10.3389/fpls.2018.01473
- Kudoyarova. G., Arkhipova T., Korshunova T., Bakaeva M., Loginov O., Dodd I.C. Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses // Front. Plant Sci. 2019. V. 10. P. 1368. https://doi.org/10.3389/fpls.2019.01368
- Richardson A.E., Barea J.M., Mc Neill A.M., Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms // Plant Soil. 2009. V. 321. P. 305–339. https://doi.org/10.1007/s11104-009-9895-2
- Kudoyarova G.R., Vysotskaya L.B., Arkhipova T.N., Kuzmina L.Y., Galimsyanova N.F., Sidorova L.V., Gabbasova I.M., Melentiev A.I., Veselov S.Y. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants // Acta Physiol. Plant. 2017. V. 39. P. 253. https://doi.org/10.1007/s11738-017-2556-9
- Meena V.S., Mauryaa B.R., Verma J.P. Does a rhizospheric microorganism enhance K+ availability in agricultural soils? // Microbiol. Res. 2014. V. 169. P. 337–334. https://doi.org/10.1016/j.micres.2013.09.003
- Islam M.R., Sultana T., Joe M.M., Yim W., Cho J.-C., Sa T. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper // J. Basic Microbiol. 2013. V. 53. P. 1004–1015. https://doi.org/10.1002/jobm.201200141
- Asari S., Tarkowská D., Rolčík J., Novák O., David Palmero D.V., Bejai S., Meijer J. Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant // Planta. 2017. V. 245. P. 15–30.
- Bakhshandeh E., Gholamhosseini M., Yaghoubian Y., Pirdashti H. Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress // Plant Growth Regul. 2020. V. 90. P. 123–136. https://doi.org/10.1007/s10725-019-00556-5
- Czarnes S., Mercier P.-E., Lemoine D.G., Hamzaoui J., Legendre L. Impact of soil water content on maize responses to the plant growth-promoting rhizobacterium Azospirillum lipoferum CRT1 // J. Agro. Crop Sci. 2020. V. 206. P. 505–516. https://doi.org/10.1111/jac.12399
- Mukhtar T., Rehman S., Smith D., Sultan T., Seleiman M.F., Alsadon A.A. Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: Effects on biochemical profiling // Sustainability. 2020. V. 12. P. 2159. https://doi.org/10.3390/su12062159
- El-Sayed S.Y.S., Hagab R.H. Effect of organic acids and plant growth promoting rhizobacteria (PGPR) on biochemical content and productivity of wheat under saline soil conditions // Middle East J. Agric. Res. 2020. V. 9. P. 227–242. https://doi.org/10.36632/mejar/2020.9.2.2
- Shen J., Guo M., Wang Y., Yuan X., Wen Y., Song X., Dong S., Guo P. Humic acid improves the physiological and photosynthetic characteristics of millet seedlings under drought stress // Plant Signal. Behav. 2020. V. 15. № 8. P. 1774212. https://doi.org/10.1080/15592324.2020.1774212
- Canellas L.P., Olivares F.L., Aguiar N.O., Jones D.L., Nebbioso A., Mazzei P. Humic and fulvic acids as biostimulants in horticulture // Sci. Hortic. 2015. V. 196. P. 15–27. https://doi.org/10.1016/j.scienta.2015.09.013
- Olaetxea M., De Hita D., Garcia C.A., Fuentes M., Baigorri R., Mora V. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root and shoot-growth // Appl. Soil Ecol. 2017. V. 123. P. 521–537. https://doi.org /https://doi.org/10.1016/j.apsoil.2017.06.007
- Nazarov A.M., Garankov I.N., Tuktarova I.O., Salmanova E.R., Arkhipova T.N., Ivanov I.I., Feoktistova A.V., Prostyakova Z.G., Kudoyarova G.R. Hormone balance and shoot growth in wheat (Triticum durum Desf.) plants as influenced by sodium humates of the granulated organic fertilizer // Agricult. Biol. 2020. V. 55. P. 945–955.
- Ullah A., Ali M., Shahzad K., Ahmad F., Iqbal S., Rahman M.H.U., Ahmad S., Iqbal M.M., Danish S., Fahad S., Alkahtani J. Impact of seed dressing and soil application of potassium humate on cotton plants productivity and fiber quality // Plants. 2020. V. 9. P. 1444. https://doi.org/10.3390/plants9111444
- Olaetxea M., Mora V., Bacaicoa E., Garnica M., Fuentes M., Casanova E., Zamarreño A.M., Iriarte J.C., Etayo D., Ederra I. Abscisic acid regulation of root hydraulic conductivity and aquaporin gene expression is crucial to the plant shoot growth enhancement caused by rhizosphere humic acids // Plant Physiol. 2015. V. 169. P. 2587–2596. https://doi.org/10.1104/pp.15.00596
- Tikhonov V.V., Yakushev A.V., Zavgorodnyaya Y.A., Byzov B.A., Demin V.V. Effects of humic acids on the growth of bacteria // Euras. J. Soil Sci. 2010. V. 43. P. 305–313. https://doi.org/10.1134/S1064229310030087
- Verbon E.H., Liberman L.M. Beneficial microbes affect endogenous mechanisms controlling root development // Trends Plant Sci. 2016. V. 21. P. 218–229. https://doi.org/10.1016/j.tplants.2016.01.013
- Cueva-Yesquén L.G., Goulart M.C., Attili de Angelis D., Nopper Alves M., Fantinatti-Garboggini F. Multiple plant growth-promotion traits in endophytic bacteria retrieved in the vegetative stage from passionflower // Front. Plant Sci. 2021. V. 11. P. 621740. https://doi.org/10.3389/fpls.2020.621740
- Feoktistova A., Bakaeva M., Timergalin M., Chetverikova D., Kendjieva A., Rameev T., Hkudaygulov G., Nazarov A., Kudoyarova G., Chetverikov S. Effects of humic substances on the growth of Pseudomonas plecoglossicida 2,4-D and wheat plants inoculated with this strain // Microorganisms. 2022. V. 10. P. 1066. https://doi.org/10.3390/microorganisms10051066
- Hai N.N., Chuong N.N., Tu N.H.C., Kisiala A., Hoang X.L.T., Thao N.P. Role and regulation of cytokinins in plant response to drought stress // Plants (Basel). 2020. V. 9. P. 422. https://doi.org/10.3390/plants9040422
- Muhammad Aslam M., Waseem M., Jakada B.H., Okal E.J., Lei Z., Saqib H.S.A., Yuan W., Xu W., Zhang Q. Mechanisms of abscisic acid-mediated drought stress responses in plants // Inter. J. Mol. Sci. 2022. V. 23. P. 1084. https://doi.org/10.3390/10.3390/ijms23031084
- Chetverikov S.P., Sharipov D.A., Korshunova T.Y., Loginov O.N. Degradation of perfluorooctanyl sulfonate by strain Pseudomonas plecoglossicida 2,4-D // Appl. Biochem. Microbiol. 2017. V. 53. P. 533–538. https://doi.org/10.1134/S0003683817050027
- Bakaeva M., Kuzina E., Vysotskaya L., Kudoyarova G., Arkhipova T., Rafikova G., Chetverikov S., Korshunova T., Chetverikova D., Loginov O. Capacity of Pseudomonas strains to degrade hydrocarbons, produce auxins and maintain plant growth under normal conditions and in the presence of petroleum contaminants // Plants. 2020. V. 9. P. 379. https://doi.org/10.3390/plants9030379
- Vysotskaya L.B., Korobova A.V., Veselov S.Y., Dodd I.C., Kudoyarova G.R. ABA mediation of shoot cytokinin oxidase activity: assessing its impacts on cytokinin status and biomass allocation of nutrient deprived durum wheat // Funct. Plant Biol. 2009. V. 36. P. 66–72.
- Kudoyarova G.R., Melentiev A.I., Martynenko E.V., Arkhipova T.N., Shendel G.V., Kuzmina L.Y., Dodd I.C., Veselov S.Yu. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots // Plant Physiol. Biochem. 2014. V. 83. P. 285–291. https://doi.org/10.1016/j.plaphy.2014.08.015
- Nacry P., Canivenc G., Muller B., Azmi A., Onckelen H.V., Rossignol M., Doumas P. A role for auxin redistribution in the response of the root system architecture to phosphate starvation in Arabidopsis // Plant Physiol. 2005. V. 138. P. 2061–2074. https://doi.org/10.1104/pp.105.060061
- Yang J., Worley E., Udvardi M. A NAP-AAO3 regulatory module promotes chlorophyll degradation via aba biosynthesis in Arabidopsis leaves // Plant Cell. 2014. V. 26. P. 4862–4874. https://doi.org/10.1105/tpc.114.133769
- Belimov A.A., Dodd I.C., Safronova V.I., Dumova V.A., Shaposhnikov A.I., Ladatko A.G., Davies W.J. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth // Plant Physiol. Biochem. 2014. V. 74. P. 84–91. https://doi.org/10.1016/j.plaphy.2013.10.032
- Pizzeghello D., Francioso O., Ertani A., Muscolo A., Nardi S. Isopentenyladenosine and cytokinin-like activity of different humic substances // J. Geochem. Explor. 2013. V. 129. P. 70–75.
- Hönig M., Plíhalova L., Husičkova A., Nisler J., Doležal K. Role of cytokinins in senescence, antioxidant defence and photosynthesis // Inter. J. Mol. Sci. 2018. V. 19. P. 4045. https://doi.org/10.3390/ijms19124045
- Korobova A.V., Akhiyarova G.R., Veselov S.Y., Kudoyarova G.R., Fedyaev V.V., Farkhutdinov R.G. Participation of nitrate sensor NRT1.1 in the control of cytokinin level and root elongation under normal conditions and nitrogen deficit // Mosc. Univ. Biol. Sci. Bull. 2019. V. 74. P. 221–226. https://doi.org/10.3103/S0096392519040072
- Werner T., Nehnevajova E., Köllmer I., Novak O., Strnad M., Krämer U., Schmülling T. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and Tobacco // Plant Cell. 2010. V. 22. P. 3905–3920. https://doi.org/10.1105/tpc.109.072694
- Liu S., Strauss S., Adibi M., Mosca G., Yoshida S., Ioio R.D., Runions A., Andersen T.G., Grossmann G., Huijser P., Smith R.S., Tsiantis M. Cytokinin promotes growth cessation in the Arabidopsis root // Curr. Biol. 2022. V. 32. P. 1974–1985. https://doi.org/10.1016/j.cub.2022.03.019
- Jones B.J., Ljung K. Auxin and cytokinin regulate each other’s levels via a metabolic feedback loop // Plant Signal. Behav. 2011. V. 6. P. 901–904. https://doi.org/10.4161/psb.6.6.15323
Supplementary files
