Method of Preparation, Study of the Structure and Mechanical Properties of the Composite Material “Chitosan–Titanium Dioxide” for Agricultural Use
- 作者: Baikin A.S.1, Glinushkin A.P.2, Zhelezova S.V.2, Stepanova E.V.2, Sevostyanova E.P.2, Konushkin S.V.1, Sergienko K.V.1, Nasakin E.O.1, Kaplan M.A.1, Mikhailova A.V.1,2, Melnikov A.A.1, Sevostyanov M.A.1,2
-
隶属关系:
- Institute of Metallurgy and Materials Science named after. A.A. Baykova RAS
- The All-Russian Research Institute of Phytopathology
- 期: 编号 5 (2023)
- 页面: 77-82
- 栏目: Research Methods
- URL: https://journals.rcsi.science/0002-1881/article/view/139551
- DOI: https://doi.org/10.31857/S0002188123050034
- EDN: https://elibrary.ru/URMUFA
- ID: 139551
如何引用文章
详细
Bioprotective materials for agriculture are an important part of the modern world. A wide range of different compounds are used for their development. For example, titanium dioxide, in addition to its protective properties, has a positive effect on the digestibility of nutrients, improves the efficiency of fertilizers and, accordingly, reduces their consumption, which is especially important in the modern world. However, direct injection of titanium dioxide is ineffective due to the processes of its loss. The best option is a prolonged isolation that provides the required concentration of titanium dioxide in the soil for the plant. The introduction of titanium dioxide into the polymer matrix can solve this problem by gradual release. In turn, such a polymer matrix has a number of requirements for their properties. A possible solution may be chitosan – a non-toxic, non-immunogenic, antimicrobial, biologically safe and biodegradable material. The paper considers the preparation of the composite material “chitosan–titanium dioxide” in granular form. The efficiency of a material with mass ratios of chitosan to titanium dioxide of 1 : 1, 2 : 1 and 3 : 1, as well as chitosan without titanium dioxide, has been studied. The structure and mechanical properties of the obtained composite materials are investigated.
作者简介
A. Baikin
Institute of Metallurgy and Materials Science named after. A.A. Baykova RAS
编辑信件的主要联系方式.
Email: vniif@vniif.ru
Russia, 119332, Moscow, Leninsky Prospekt, 49
A. Glinushkin
The All-Russian Research Institute of Phytopathology
Email: vniif@vniif.ru
Russia, 143050, Moscow region, Odintsovo, r.p. Bolshye Vyazemy, Institute ul., vlad. 5
S. Zhelezova
The All-Russian Research Institute of Phytopathology
Email: vniif@vniif.ru
Russia, 143050, Moscow region, Odintsovo, r.p. Bolshye Vyazemy, Institute ul., vlad. 5
E. Stepanova
The All-Russian Research Institute of Phytopathology
Email: vniif@vniif.ru
Russia, 143050, Moscow region, Odintsovo, r.p. Bolshye Vyazemy, Institute ul., vlad. 5
E. Sevostyanova
The All-Russian Research Institute of Phytopathology
Email: vniif@vniif.ru
Russia, 143050, Moscow region, Odintsovo, r.p. Bolshye Vyazemy, Institute ul., vlad. 5
S. Konushkin
Institute of Metallurgy and Materials Science named after. A.A. Baykova RAS
Email: vniif@vniif.ru
Russia, 119332, Moscow, Leninsky Prospekt, 49
K. Sergienko
Institute of Metallurgy and Materials Science named after. A.A. Baykova RAS
Email: vniif@vniif.ru
Russia, 119332, Moscow, Leninsky Prospekt, 49
E. Nasakin
Institute of Metallurgy and Materials Science named after. A.A. Baykova RAS
Email: vniif@vniif.ru
Russia, 119332, Moscow, Leninsky Prospekt, 49
M. Kaplan
Institute of Metallurgy and Materials Science named after. A.A. Baykova RAS
Email: vniif@vniif.ru
Russia, 119332, Moscow, Leninsky Prospekt, 49
A. Mikhailova
Institute of Metallurgy and Materials Science named after. A.A. Baykova RAS; The All-Russian Research Institute of Phytopathology
Email: vniif@vniif.ru
Russia, 119332, Moscow, Leninsky Prospekt, 49; Russia, 143050, Moscow region, Odintsovo, r.p. Bolshye Vyazemy, Institute ul., vlad. 5
A. Melnikov
Institute of Metallurgy and Materials Science named after. A.A. Baykova RAS
Email: vniif@vniif.ru
Russia, 119332, Moscow, Leninsky Prospekt, 49
M. Sevostyanov
Institute of Metallurgy and Materials Science named after. A.A. Baykova RAS; The All-Russian Research Institute of Phytopathology
Email: vniif@vniif.ru
Russia, 119332, Moscow, Leninsky Prospekt, 49; Russia, 143050, Moscow region, Odintsovo, r.p. Bolshye Vyazemy, Institute ul., vlad. 5
参考
- Stanley N., Mahanty B. Preparation and characterization of biogenic CaCO3-reinforced polyvinyl alcohol-alginate hydrogel as controlled-release urea formulation // Polym. Bull. 2019. V. 77. P. 529–540.
- Vishwakarma K., Upadhyay N., Kumar N., Tripathi D.K., Chauhan D.K., Sharma S., Sahi S. Potential applications and avenues of nanotechnology in sustainable agriculture // Academic Press. 2018. V. 1. P. 473–500.
- Babadi F.E., Yunus R., Rashid S.A., Salleh M.M., Ali S. New coating formulation for the slow release of urea using a mixture of gypsum and dolomitic limestone // Particuology. 2015. V. 23. P. 62–67.
- Sim D.H.H., Tan I.A.W., Lim L.L.P., Hameed B.H. Encapsulated biochar-based sustained release fertilizer for precision agriculture. A review // J. Cleaner Product. 20 June 2021. V. 303. 127018. https://doi.org/10.1016/j.jclepro.2021.127018
- Liu R., Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions // Sci. Total Environ. 2015. V. 514. P. 131–139.
- Dimkpa C.O., Bindraban P.S. Nanofertilizers: new products for the industry? // J. Agric. Food Chem. 2017. https://doi.org/10.1021/acs.jafc.7b02150
- Kah M., Kookana R.S., Gogos A., Bucheli T.D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues // Nat. Nanotechnol. 2018. https://doi.org/10.1038/s41565-018-0131-1
- Raliya R., Saharan V., Dimkpa C., Biswas P. Nanofertilizer for precision and sustainable agriculture: current state and future perspectives // J. Agric. Food Chem. 2017. https://doi.org/10.1021/acs.jafc.7b02178
- Sangeeta Chavan, Vishwas Sarangdhar, Vigneshwaran Nadanathangam. Toxicological effects of TiO2 nanoparticles on plant growth promoting soil bacteria // Emerg. Contamin. 2020. V. 6. P. 87–92. https://doi.org/10.1016/j.emcon.2020.01.003
- Selma M.H., Jawad A.L., Taha Ali A., Salim M.M. Synthesis and characterization of pure and Fe doped TiO2 thin films for antimicrobial activity // Optik. 2017. V. 142. P. 42–53. https://doi.org/10.1016/j.ijleo.2017.05.048
- Sreeja S., Shetty K.V. Photocatalytic water disinfection under solar irradiation by Ag@TiO2 core-shell structured nanoparticles // Solar Energy. 2017. V. 157. P. 236–243. https://doi.org/10.1016/j.solener.2017.07.057
- Grégori D., Benchenaa I., Chaput F., Thérias S., Gardette J.-L., Léonard D., Guillard C., Parola S. Mechanically stable and photocatalytically active TiO2/SiO2 hybrid films on flexible organic substrates // J. Mater. Chem. 2014. V. 2. P. 20096–20104. https://doi.org/10.1039/C4TA03826F
- Vladkova T., Angelov O., Stoyanova D., Gospodinova D., Gomes L., Soares A., Mergulhao F., Ivanova I. Magnetron co-sputtered TiO2/SiO2/Ag nanocomposite thin coatings inhibiting bacterial adhesion and biofilm formation // Surface Coat. Technol. 2020. V. 384. Iss. 125322. https://doi.org/10.1016/j.surfcoat.2019.125322
- Xing Y., Yang H., Guo X., Bi X., Liu X., Xu Q., Wang Q., Li W., Li X., Shui Y., Chen C., Zheng Y. Effect of chitosan/Nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits // Sci. Horticult. 2020. V. 263. Iss. 109135. https://doi.org/10.1016/j.scienta.2019.109135
- González-Saucedo A., Barrera-Necha L.L., Ventura-Aguilar R.I., Correa-Pacheco Z.N., Bautista-Baños S., Hernández-López M. Extension of the postharvest quality of bell pepper by applying nanostructured coatings of chitosan with Byrsonima crassifolia (L.) Kunth extract // Postharvest Biol. Technol. 2019. V. 149. P. 74–82. https://doi.org/10.1016/j.postharvbio.2018.11.019
- Waani S.P.T., Irum S., Gul I., Yaqoob K., Khalid M.U., Ali M.A., Manzoor U., Noor T., Ali S., Rizwan M., Arshad M. TiO2 nanoparticles dose, application method and phosphorous levels influence genotoxicity in Rice (Oryza sativa L.), soil enzymatic activities and plant growth // Ecotoxicol. Environ. Saf. 2021. V. 213. Iss. 111977. https://doi.org/10.1016/j.ecoenv.2021.111977
- Bakshi M., Liné C., Bedolla D.E., Stein R.J., Kaegi R., Sarret G., Pradas del Real A.E., Castillo-Michel H., Abhilash P.C., Larue C. Assessing the impacts of sewage sludge amendment containing nano-TiO2 on tomato plants: A life cycle study // J. Hazard. Material. 2019. V. 369. P. 191–198. https://doi.org/10.1016/j.jhazmat.2019.02.036
- Ullah S., Adeel M., Zain M., Rizwan M., Irshad M.K., Jilani G., Hameed A., Khan A., Arshad M., Raza A., Baluch M.A., Rui Y. Physiological and biochemical response of wheat (Triticum aestivum) to TiO2 nanoparticles in phosphorous amended soil: A full life cycle study // J. Environ. Manag. 2020. V. 263. Iss. 110365. https://doi.org/10.1016/j.jenvman.2020.110365
补充文件
