Estimate of the Lebesgue Function of Fourier Sums in Terms of Modified Meixner Polynomials


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper is devoted to the study of the approximation properties of Fourier sums in terms of the modified Meixner polynomials mn,Nα(x), n = 0,1,..., which generate, for α > -1, an orthonormal system on the grid Ωδ = {0, δ, 2δ,...} with weight

\({\rho _N}(x) = {e^{ - x}}\frac{{\Gamma (Nx + \alpha + 1)}}{{\Gamma (Nx + 1)}}{(1 - {e^{ - \delta }})^{\alpha + 1}},\;\;\;\;\text{where}\;\;\delta = \frac{1}{N},\;N \geq 1.\)

The main attention is paid to the derivation of a pointwise estimate for the Lebesgue function λn,Nα(x) of Fourier sums in terms of the modified Meixner polynomials for x ∈ [θn/2, ∞) and θn = 4n + 2α + 2.

作者简介

R. Gadzhimirzaev

Daghestan Federal Research Center of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ramis3004@gmail.com
俄罗斯联邦, Makhachkala, 367025

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019