Estimate of the Lebesgue Function of Fourier Sums in Terms of Modified Meixner Polynomials
- 作者: Gadzhimirzaev R.M.1
-
隶属关系:
- Daghestan Federal Research Center of Russian Academy of Sciences
- 期: 卷 106, 编号 3-4 (2019)
- 页面: 526-536
- 栏目: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/152105
- DOI: https://doi.org/10.1134/S0001434619090220
- ID: 152105
如何引用文章
详细
The paper is devoted to the study of the approximation properties of Fourier sums in terms of the modified Meixner polynomials mn,Nα(x), n = 0,1,..., which generate, for α > -1, an orthonormal system on the grid Ωδ = {0, δ, 2δ,...} with weight
\({\rho _N}(x) = {e^{ - x}}\frac{{\Gamma (Nx + \alpha + 1)}}{{\Gamma (Nx + 1)}}{(1 - {e^{ - \delta }})^{\alpha + 1}},\;\;\;\;\text{where}\;\;\delta = \frac{1}{N},\;N \geq 1.\)![]()
The main attention is paid to the derivation of a pointwise estimate for the Lebesgue function λn,Nα(x) of Fourier sums in terms of the modified Meixner polynomials for x ∈ [θn/2, ∞) and θn = 4n + 2α + 2.
作者简介
R. Gadzhimirzaev
Daghestan Federal Research Center of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: ramis3004@gmail.com
俄罗斯联邦, Makhachkala, 367025
补充文件
