On the Degree of Hilbert Polynomials of Derived Functors
- Авторлар: Saremi H.1, Mafi A.2
-
Мекемелер:
- Department of Mathematics, Sanandaj Branch
- Department of Mathematics
- Шығарылым: Том 106, № 3-4 (2019)
- Беттер: 423-428
- Бөлім: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/152051
- DOI: https://doi.org/10.1134/S0001434619090116
- ID: 152051
Дәйексөз келтіру
Аннотация
Given a d-dimensional Cohen–Macaulay local ring (R,m), let I be an m-primary ideal, and let J be a minimal reduction ideal of I. If M is a maximal Cohen–Macaulay R-module, then, for n large enough and 1 ≤ i ≤ d, the lengths of the modules ExtRi(R/J,M/InM) and ToriR(R/J,M/InM) are polynomials of degree d − 1. It is also shown that
\(\deg \beta _i^R(M/{I^n}M) = \deg \mu _R^i(M/{I^n}M) = d - 1,\)![]()
where βiR (·) and μRi (·) are the ith Betti number and the ith Bass number, respectively.Негізгі сөздер
Авторлар туралы
H. Saremi
Department of Mathematics, Sanandaj Branch
Хат алмасуға жауапты Автор.
Email: hero.saremi@gmail.com
Иран, Sanandaj
A. Mafi
Department of Mathematics
Хат алмасуға жауапты Автор.
Email: A_Mafi@ipm.ir
Иран, Sanandaj
Қосымша файлдар
