On the Degree of Hilbert Polynomials of Derived Functors
- Autores: Saremi H.1, Mafi A.2
-
Afiliações:
- Department of Mathematics, Sanandaj Branch
- Department of Mathematics
- Edição: Volume 106, Nº 3-4 (2019)
- Páginas: 423-428
- Seção: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/152051
- DOI: https://doi.org/10.1134/S0001434619090116
- ID: 152051
Citar
Resumo
Given a d-dimensional Cohen–Macaulay local ring (R,m), let I be an m-primary ideal, and let J be a minimal reduction ideal of I. If M is a maximal Cohen–Macaulay R-module, then, for n large enough and 1 ≤ i ≤ d, the lengths of the modules ExtRi(R/J,M/InM) and ToriR(R/J,M/InM) are polynomials of degree d − 1. It is also shown that
\(\deg \beta _i^R(M/{I^n}M) = \deg \mu _R^i(M/{I^n}M) = d - 1,\)![]()
where βiR (·) and μRi (·) are the ith Betti number and the ith Bass number, respectively.Palavras-chave
Sobre autores
H. Saremi
Department of Mathematics, Sanandaj Branch
Autor responsável pela correspondência
Email: hero.saremi@gmail.com
Irã, Sanandaj
A. Mafi
Department of Mathematics
Autor responsável pela correspondência
Email: A_Mafi@ipm.ir
Irã, Sanandaj
Arquivos suplementares
