Martin Integral Representation for Nonharmonic Functions and Discrete Co-Pizzetti Series
- Авторы: Boiko T.1, Karpenkov O.1
-
Учреждения:
- University of Liverpool
- Выпуск: Том 106, № 5-6 (2019)
- Страницы: 659-673
- Раздел: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/151844
- DOI: https://doi.org/10.1134/S0001434619110014
- ID: 151844
Цитировать
Аннотация
In this paper, we study the Martin integral representation for nonharmonic functions in discrete settings of infinite homogeneous trees. Recall that the Martin integral representation for trees is analogs to the mean-value property in Euclidean spaces. In the Euclidean case, the mean-value property for nonharmonic functions is provided by the Pizzetti (and co-Pizzetti) series. We extend the co-Pizzetti series to the discrete case. This provides us with an explicit expression for the discrete mean-value property for nonharmonic functions in discrete settings of infinite homogeneous trees.
Ключевые слова
Об авторах
T. Boiko
University of Liverpool
Автор, ответственный за переписку.
Email: t.boiko@liverpool.ac.uk
Великобритания, Liverpool, L69 3BX
O. Karpenkov
University of Liverpool
Автор, ответственный за переписку.
Email: karpenk@liverpool.ac.uk
Великобритания, Liverpool, L69 3BX
Дополнительные файлы
