Martin Integral Representation for Nonharmonic Functions and Discrete Co-Pizzetti Series


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we study the Martin integral representation for nonharmonic functions in discrete settings of infinite homogeneous trees. Recall that the Martin integral representation for trees is analogs to the mean-value property in Euclidean spaces. In the Euclidean case, the mean-value property for nonharmonic functions is provided by the Pizzetti (and co-Pizzetti) series. We extend the co-Pizzetti series to the discrete case. This provides us with an explicit expression for the discrete mean-value property for nonharmonic functions in discrete settings of infinite homogeneous trees.

作者简介

T. Boiko

University of Liverpool

编辑信件的主要联系方式.
Email: t.boiko@liverpool.ac.uk
英国, Liverpool, L69 3BX

O. Karpenkov

University of Liverpool

编辑信件的主要联系方式.
Email: karpenk@liverpool.ac.uk
英国, Liverpool, L69 3BX

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019