Martin Integral Representation for Nonharmonic Functions and Discrete Co-Pizzetti Series
- 作者: Boiko T.1, Karpenkov O.1
-
隶属关系:
- University of Liverpool
- 期: 卷 106, 编号 5-6 (2019)
- 页面: 659-673
- 栏目: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/151844
- DOI: https://doi.org/10.1134/S0001434619110014
- ID: 151844
如何引用文章
详细
In this paper, we study the Martin integral representation for nonharmonic functions in discrete settings of infinite homogeneous trees. Recall that the Martin integral representation for trees is analogs to the mean-value property in Euclidean spaces. In the Euclidean case, the mean-value property for nonharmonic functions is provided by the Pizzetti (and co-Pizzetti) series. We extend the co-Pizzetti series to the discrete case. This provides us with an explicit expression for the discrete mean-value property for nonharmonic functions in discrete settings of infinite homogeneous trees.
作者简介
T. Boiko
University of Liverpool
编辑信件的主要联系方式.
Email: t.boiko@liverpool.ac.uk
英国, Liverpool, L69 3BX
O. Karpenkov
University of Liverpool
编辑信件的主要联系方式.
Email: karpenk@liverpool.ac.uk
英国, Liverpool, L69 3BX
补充文件
