Martin Integral Representation for Nonharmonic Functions and Discrete Co-Pizzetti Series
- Autores: Boiko T.1, Karpenkov O.1
-
Afiliações:
- University of Liverpool
- Edição: Volume 106, Nº 5-6 (2019)
- Páginas: 659-673
- Seção: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/151844
- DOI: https://doi.org/10.1134/S0001434619110014
- ID: 151844
Citar
Resumo
In this paper, we study the Martin integral representation for nonharmonic functions in discrete settings of infinite homogeneous trees. Recall that the Martin integral representation for trees is analogs to the mean-value property in Euclidean spaces. In the Euclidean case, the mean-value property for nonharmonic functions is provided by the Pizzetti (and co-Pizzetti) series. We extend the co-Pizzetti series to the discrete case. This provides us with an explicit expression for the discrete mean-value property for nonharmonic functions in discrete settings of infinite homogeneous trees.
Palavras-chave
Sobre autores
T. Boiko
University of Liverpool
Autor responsável pela correspondência
Email: t.boiko@liverpool.ac.uk
Reino Unido da Grã-Bretanha e Irlanda do Norte, Liverpool, L69 3BX
O. Karpenkov
University of Liverpool
Autor responsável pela correspondência
Email: karpenk@liverpool.ac.uk
Reino Unido da Grã-Bretanha e Irlanda do Norte, Liverpool, L69 3BX
Arquivos suplementares
